

Baseline Environmental Testing Program to Support the Proposed Construction of a Canadian Surface Combatant (CSC) Land-Based Test Facility (LBFT), Hartlen Point, Eastern Passage, Nova Scotia

Final Report

Defence Construction Canada December 28, 2021 IE036102-76648

Document History

Revision	Purpose description	Originated	Reviewed	Authorized	Date
Rev B01	Issued for Review	MF	MS	MS	25/05/2021
Rev B02	Issued for Review	SV/KT	DH	DH	12/07/2021
Rev C01	Issued For Use	DH	DH	DH	26/10/2021
Rev C02	Issued For Use	DH		DH	29/12/2021
Rev C03	Issued For Use	DH		DH	08/03/2022
Rev C04	Issued for Use	DH	AP	DH	20/04/2022
Rev C05	Issued for Use	AP	AP	AP	27/04/2022

Signature Page

Prepared By:

David Haley, P.Eng., FEC, EP Portfolio Director – Federal

Regional Director Engineering Services Canada

Reviewed By:

Clean Parker

Alan Parker, MES, P.Eng. Environmental Engineer, Project Manager

Environment Practice Engineering Services Canada

Confidentiality Notice

This report and its attachments as well as the information contained therein are confidential and may be protected by SNC-Lavalin Inc.'s intellectual property rights or any of its subsidiaries, affiliates or related companies. Such report, attachments and information are destined exclusively to Defence Construction Canada for the sole purpose of evaluating the report. Said report, attachments and information cannot be disclosed to third parties nor reproduced, utilized, or disclosed, in whole or in part, for other purposes, subject to the terms and conditions to the contrary of the contract between SNC-Lavalin Inc. or one of its subsidiaries, affiliates or related companies and Defence Construction Canada.

Executive Summary

In February 2021, SNC-Lavalin Inc. (SNCL) was retained by Defence Construction Canada (DCC), on behalf of the Department of National Defence (DND), to carry out a baseline environmental testing program to support the proposed construction of a Canadian Surface Combatant (CSC) Land-Based Test Facility (LBTF) at Hartlen Point, Eastern Passage, Nova Scotia (NS).

The program had three (3) primary Objectives:

- 1. Assess current "baseline" environmental conditions at the site prior to the design, construction, and operation of a LBTF;
- 2. Identify any soil and groundwater management considerations in support of design of the LBTF; and
- 3. Identify any site/land use restrictions to support planning decisions in relation to the proposed change in land use and construction of the LBTF.

Provided below are summary discussions on the three primary objectives.

Baseline Environmental Conditions at the site prior to the design, construction, and operation of a LBTF.

> Assessment of Previous Investigations

The federal contaminated sites program has been undertaken at Canadian Forces Base (CFB) Shearwater and adjacent federal lands. Considerable work has been completed with the identification of potential contaminated sites and subsequent investigations and quantifications. These previous investigations have been reviewed in the context of any associations with the lands proposed for the LBTF.

Previous work identified Site 50 (Former Beacon, Emergency Explosives Demolition Area and Artillery Firing Range): Metals and polycyclic aromatic hydrocarbon (PAH) impacts were identified as potential contaminants associated with these activities. The explosive ordinance disposal (EOD) area was interpreted to have been eroded into the shoreline and use of the artillery firing range was identified to have been short lived and replaced by concrete gun emplacements along the western side of the golf course; and Site 51 (Building HP151 - Crash Guard Tactical Air Navigation (TACAN) Building: an existing petroleum Aboveground Storage Tank (AST) and potential Underground Storage Tank (UST) were identified as potential sources of contaminants. Test pitting was completed by Maritime Groundwater Inc. (MGI) in 1997 at Site 51 to investigate potential petroleum impacts related to a former AST. Based upon visual inspection of soil within the test pit it was concluded that the site was assessed, and no further action was recommended.

Test pitting, monitoring well (MW) installation and hand auger sampling were carried out at several locations within the general area of the proposed LBTF site, including the documented small arms range in the general vicinity. The results of soil recovered in 2001 and submitted for metals and hydrocarbons analytical results were reported to be below the applicable respective 1999 Canadian Council of Ministers of Environment (CCME) Commercial and Atlantic Risk-Based Corrective Action (RBCA) Tier I Guidelines for soil.

A Natural Resource Management Plan (NRMP) for the Hartlen Point area property over a 5-year span. Their work included a compilation of known natural resources data for the property, additional inventory to fill gaps within the study timeframe, recommended natural resource management or mitigation measures and determination of relevant sustainability and biodiversity indicators. Water quality analysis for all surface water samples show elevated levels of chemical – physical parameters consistent with the use of pesticides, fertilizers or herbicides which could be used for maintenance of the greens at the nearby golf course. It is noted that golf course runoff does not discharge through the proposed LBTF property, however it is proximal to the north and western boundaries.

Regarding geotechnical investigation, a 2020 study provided recommendations for the proposed development of a Land Based Training Facility (LBTF) at Hartlen Point. This work was based upon ten test pits at various locations to characterize the conditions throughout the Site and is directly relevant to constructability conclusions. Recommendations confirmed suitability of soils for on-site use including excavation and fill placement, excavation slopes, groundwater control and foundation design and soil parameters to be considered in the LBTF design.

A recent 2020 study: Final Concept Report – Irving Shipbuilding Inc. – Land Based Test Facility provided details and recommendation specific to the development of the LBTF and would be relevant to several of the Objectives of the Subject Report. Including: Geotechnical assessment should consider potential for pyritic slate to be present. Impacted material (metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, volatile organic compounds) may be present in area of CS5550 southeast of proposed building (fenced area); further review is recommended, and potential assessment to quantify impacted material and manage either through off-site disposal or onsite in accordance with Royal Canadian Navy Maritime Forces Atlantic Formation (MARLANT) Safety and Environmental Management System (SEMS) Directive #E2.

> Results of Current Investigations

In response to the 2020 study: Final Concept Report – Irving Shipbuilding Inc. – Land Based Test Capability recommendation; a Hartlen Point property reconnaissance was completed on March 8, 2021. It included reconnaissance of the Site to confirm the locations of several activities of potential concern that were noted from the desktop information review and documented current land uses.

The borehole and monitoring well location plans were designed to assess areas of potential environmental concern identified within the previous reports provided by DCC and to provide baseline environmental soil and groundwater testing within and near the construction footprint of the proposed LBTF development. The investigation would also log soil type and strata, as well as groundwater elevations and note any other physical conditions that may be useful to support the design and construction of the future land-based training mock-up facility for the Canadian frigate's facility. Each borehole and groundwater monitoring well was positioned to determine the presence of metals, Petroleum Hydrocarbons (PHCs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and Perfluoroalkyl Substances (PFAS) in soil and groundwater within the areas investigated.

The drilling program was carried out between March 15 and 22, 2021. The program consisted of six (6) boreholes (S5551-21BH01 to S5551-21BH06 inclusive) and six (6) monitoring wells (S5551-21MW01 to S5551-21MW06 inclusive) drilled to depths between 2.9 metres (m) and 9.1 metres below ground surface (mgs) with a track mounted continuous flight auger rig using solid stem augers.

The concentrations of PHCs, VOCs, PAHs and PFAS in soil were reported by the laboratory to be below method detection limits for all parameters tested except for the PAH Perylene, for which a concentration of 0.05 mg/kg (equal to the RDL for Perylene) was measured in sample S5551-21MW03-21SS-06 and 0.06 mg/kg in sample S5551-21BH06-08.

The metals in soil results were below either the applicable Guideline or the method detection limit for most of the parameters tested. The only exceptions were Arsenic in soil sample S5551-21BH05-07 (14 milligrams per kilogram (mg/kg)) and S5551-21BH05-08 (14 mg/kg), sample S5551-21BH06-08 (14 mg/kg) and duplicate sample S5551-21BH06-09 (15 mg/kg) which were reported by the laboratory to slightly exceed the applicable CCME guideline of 12 mg/kg, however they are below the MARLANT guideline for arsenic of 36 mg/kg. Iron was identified by the laboratory to exceed the applicable guideline in all samples except for S5551-21BH03-01. These data are consistent with metals and PHC soil analytical results reported by Neill and Gunter (2002). The presence of elevated levels of arsenic and iron in soil and groundwater within this region is not uncommon (Dillon, 2011; NSE, 2015) and is likely related to the presence dissolution of sulfide minerals frequently associated with bedrock and constituents within overburden originating from the Halifax Formation strata.

The PHC, VOC, PAH and PFAS in groundwater results were reported by the laboratory to be below method detection limit for all parameters tested except for the RDL for Benzene and Ethylbenzene. The metals in groundwater results were reported by the laboratory to be below the applicable Guideline, CCME Canadian Environmental Quality Guidelines (CEQGs) - Water Quality Guidelines for the Protection of Freshwater Aquatic Life (FWAL) (1999, updated 2015) or the method detection limit for most of the parameters tested. The only exceptions were Arsenic in groundwater recovered from S5551-21MW05-21GW-01 (14 μ g/L), and S5551-21MW06-21GW-01 (46 μ g/L) and Iron in groundwater from S5551-21MW06-21GW-01 (671 μ g/L).

Both Arsenic and Iron in soils are listed on the Nova Scotia Department of Environment Contaminated sites Guidance Document as Substances Potentially considered Background Occurrences (Guidance Document - Table 5). Similarly, both Arsenic and Iron in groundwater exceed the same reference guidelines.

Pyritic slate was not observed. Bedrock elevations we not encountered at the 10 mbgs well completion horizon. No other contaminants of concern were identified.

SNCL has prepared a Preliminary Conceptual Site Model (CSM), presented through an exposure pathway analysis and resultant CSM figure presented in Appendix D. The CSM includes information related to the Site geologic and hydrogeologic setting, identifies the contaminants of potential concern (COPCs), identified human and ecological receptors of concern (ROCs) and identifies associated potential risks to human health and the environment under current and future land uses. No adverse effects were identified for human health or the environment in the CSM from residual contamination at the Site.

Soil and Groundwater Management Considerations in Support of Design of the LBTF

Soils – Arsenic, and Iron concentrations in soils exceed one or both reference guidelines, CCME CSQG's and the Province of Nova Scotia Tier 1 remediation guidelines. In both cases the guidelines incorporate both human health and ecological considerations. As such, and in accordance with the Contaminated Sites Instruction (CSI.004.001) for Soil Management, the disturbance, removal, and /or re-use of these soils must be undertaken in accordance with a prescribed Management Plan. This plan will apply site-specific standards and requirements based on the proposed re-use and potential risks. Based on the concentrations, extensive on-site re-use of these soils will be possible with the application of prescribed procedures and controls based on the application. Off-site use would require provincial notification and application of the Nova Scotia Contaminated Site Regulations.

The physical characteristics of the soil would not generally restrict on-site re-use. Grain size, drainage and erosion characteristics would need to be evaluated and matched to the suitable re-use options (i.e., backfill, cover material, landscaping features etc.). Given the finer grain sizes, minimizing dust generation will be an important consideration in any Soil Management Plan.

Groundwater – Arsenic and Iron in groundwater concentrations exceed the CCME Canadian Environmental Quality Guidelines (CEQGs) – Water Quality Guidelines for the Protection of Freshwater Aquatic Life (FWAL) (1999, Updated in 2015). It is understood the proposed LBTF will be connected to municipal services. Non-potable assessment criteria would be relevant. Observations (adjacent wetlands, and coastal slopes and elevations) support a conclusion the site is a groundwater discharge zone. The groundwater is currently interacting with surficial ecology and therefore any proposed de-watering would not likely present a change in existing conditions. The borehole investigation noted some siltation in the water columns suggesting construction earthwork activities, include temporary dewatering, may require siltation controls (e.g., sedimentation pond or equivalent).

Localized groundwater was identified in several wells within the upper 2 m of the soil profile. Assuming a typical depth of soil disturbance supporting the proposed LBTF of 5 mbgs, groundwater management will be a requirement design consideration, as well as during proposed construction activities. Artesian conditions were encountered in one monitoring well. Further investigation may be required, depending upon the facility design parameters, to assess perched and artesian groundwater at the Site as these conditions may influence geotechnical design parameters.

Site/Land Use Restrictions to Support Planning Decisions in Relation to the Proposed Change in Land Use and Construction of the LBTF

The exact location of the former Emergency Explosives Demolition (EOD) area and small arms ranges remains unclear. As a result, the presence of potential related contaminants in soil or groundwater or other EOD related safety concerns will need to be highlighted in construction related planning information and Specifications.

The site is located at the end of a public road with residential development terminating at a public golf course and federal lands. Seasonal and construction period traffic considerations should be considered. Seasonal load restrictions on this road classification would also be applicable.

The Final Concept Report – Irving Shipbuilding Inc. – Land Based Test Facility Report noted several potential land/use restrictions related to plant Species of Conservation Concern, as well as additional items note part of this scope of Work, these are reference here for information.

Table of Contents

1.	Introduction		
2.	Objectives	1	
3.	Scope of Work	1	
	 3.1 Documentation Review 3.2 Site Reconnaissance 3.3 Work Plan Development	1 2 2	
4.	3.5 Data Presentation and Reporting Site Description	3	
	 4.1 Site Location		
5.	Summary of Findings	8	
6.	Preliminary Conceptual Site Model (CSM)	12	
7. 8.	Regulatory Framework 7.1 Federal Guidelines 7.2 Provincial Guidelines Methodology	12 14 14	
	 8.1 Site Reconnaissance 8.2 Utility Locates 8.3 Borehole and Monitoring Well Installation	14 14 15 15 16 16 20	

		Groundwater Purging	
		Groundwater Sampling	
	8.5	Quality Assurance / Quality Control (QA/QC)	.24
	8.6	Laboratory Analysis	.24
9.	Resul	ts	25
	9.1	Geology / Stratigraphy	
	9.2	Potentiometric Conditions	.25
	9.3	Field Observations	.25
	9.4	Soil Laboratory Analytical Results	.26
	9.5	Groundwater Laboratory Analytical Results	.26
	9.6	QA/QC	.26
		9.6.1 Laboratory Surrogate Recoveries	.27
		9.6.2 Field QA Duplicates	.29
10.	Discu	ssion and Findings	29
		Contaminants of Potential Concern (COPCs), Contaminant Source and Location Potential Receptors for the Site	
		2 Observable Contaminant Trends	
	10.3	Local Geological and Hydrogeological Conditions at the Site, Groundwater Flow erns, and Transport Mechanisms	
	10.4	Discuss any Potential Risk to the Environment or Human Health, and uirements for Further Investigation or Delineation	
		Soil and Groundwater Management Requirements (related to the Planned Designities and Future Construction and Operation of a LBTF)	
		Other Considerations Related to the Handling and Onsite and/or Offsite Disposa De Site's Soil/Groundwater During Construction Activities	
		'Site/Land Use Restrictions to Support Planning Decisions in Relation to the bosed Change in Land Use and Construction of the LBTF	.31
	10.8	B Further Assessment	.31
11.	Refer	ences	32

Appendices

App	endix A Figures		
a.	Figure 1: Location Plan		
b.	Figure 2: Site Plan		
C.	Figure 3: Sampling Locations and Groundwater Flow Direction		
d.	Figure 4: Extent of Soil and Groundwater Impacts		
Арр	endix B Analytical Results		
a.	Table 1: Available Metals in Soil		
b.	Table 2: Petroleum Hydrocarbons in Soil		
C.	Table 3: Polycyclic Aromatic Hydrocarbons in Soil		
d.	Table 4: Volatile Organic Compounds in Soil		
e.	Table 5: Perfluorinated Compounds in Soil		
f.	Table 6: Historical Report - MARLANT SE Report 466 - 2002 - Metals in Soil		
g.	Table 7: Historical Report - MARLANT SE Report 466 - 2002 - PHCs in Soil		
h.	Table 8: Dissolved Metals in Groundwater		
i.	Table 9: Petroleum Hydrocarbons in Groundwater		
j.	Table 10: Polycyclic Aromatic Hydrocarbons in Groundwater		
k.	Table 11: Volatile Organic Compounds in Groundwater		
I.	Table 12: Perfluorinated Compounds in Groundwater		
m.	Table 13: Petroleum Hydrocarbon in Groundwater – Blanks		
n.	Table 14: Polycyclic Aromatic Hydrocarbons in Groundwater – Blanks		
0.	Table 15: Volatile Organic Compounds in Groundwater – Blanks		
p.	Table 16: Perfluorinated Compounds in Groundwater - Blanks		
App	endix C Borehole and Monitoring Well Logs		
App	endix D Preliminary Conceptual Site Model		
App	endix E Photos		
App	endix F Laboratory Certificates		
App	endix G Field Notes		

Defence Construction Canada | 680449-0001-T-21-REP-000-0001_C05 Baseline Environmental Testing Program to Support the Proposed Construction of CSC LBTF, Hartlen Point, Eastern Passage, Nova Scotia

1. Introduction

SNC-Lavalin (SNCL) was retained by the Department of National Defence (DND) and Defence Construction Canada (DCC) for a Baseline Environmental Testing Program (BETP) to support the proposed construction of a Canadian Surface Combatant (CSC) Land-Based Test Facility (LBTF) at Hartlen Point in Eastern Passage, Nova Scotia (NS).

The BETP is required to determine the current/baseline environmental existing conditions prior to design/construction of the LBTF. Other requirements for the BETP are soil and groundwater management requirements during LBTF construction activities and any site/land use restrictions posed by contaminants present at the Site that could impact human health or the environment. The results of the BETP may be used to determine if the construction of the LBTF and/or DND's related operations have negatively impacted the environment at the Site.

The LBTF would be constructed on DND-owned land at Hartlen Point, in Eastern Passage, Nova Scotia. The proposed project Site is bordered by a golf course to the North, Canadian Coast Guard (CCG) and Defence Research and Development Canada (DRDC) communication facilities to the West and the Halifax Harbour to the South and East. The project Site is also located in the vicinity of two previously identified contaminated sites (Sites 5550 and 5551).

2. Objectives

The BETP involved the collection of environmental information on the Site to achieve the following objectives:

- > Assess current baseline environmental conditions at the Site prior to the design, construction, and operation of the LBTF;
- > Identify soil and groundwater management considerations in support of design of the LBTF; and
- > Identify site/land use restrictions to support planning decisions in relation to the proposed change in land use and construction of the LBTF.

3. Scope of Work

The following subsections outline the scope of work carried out by SNCL to fulfill the objectives outlined in Section 2.

3.1 Documentation Review

SNCL completed a thorough review of existing reports, plans and information provided by DCC/DND related to the Site. Document review was completed to:

- > Develop a comprehensive understanding of past and present site issues, including potential sources of contamination, and to identify data gaps; and
- > Make comparisons with previously collected data to current regulatory requirements.

A summary of findings and recommendations from the document review are included in Section 5 of this report.

3.2 Site Reconnaissance

Following document review, site reconnaissance was carried out to:

- > Compare current site conditions to those described in historical documentation, noting changes/discrepancies including anomalies, and immediate hazardous and surface contamination; and
- > Evaluate site access and select proposed sampling locations.

3.3 Work Plan Development

SNCL developed a work plan under the information provided in Section 5.3 (Work Plan) of the Statement of Work in the development of this proposal. After completion of the document review and site visit, SNCL discussed with DCC/DND proposed changes to the work plan prior to commencing the updated activities as defined in Section 5.4. SNCL's work plan included all information and requirements included in Section 5.4.1 of the Statement of Work (SOW). The revised Work Plan included details on the rational for the field program, including media to be sampled, locations, sampling methods, backup collection method(s) if the first method cannot be used due to unforeseen circumstances, analytical methods, detection limits, number, and type of quality control (QC) samples (field blanks, trip blanks, blind duplicates, regulatory framework for result comparison, anticipated schedule and updated associated costs.

Through our unexploded ordinance (UXO) Sub-consultant, the UXO Specialist developed a UXO workplan, outlining the approach and specifications of the UXO team under requirements B-GL-381-003/TS-000 Range Clearance and Unexploded Explosive Ordnance (UXO) Activities Manual (interim version April 2011).

3.4 Field Program

SNCL conducted the field program following the current version of MARLANT Standard Operating Procedures (Rev. 7.0, May 2018). During the field program, SNCL:

- > Collected a suitable amount of soil material at the depths noted in the SOW for specific analytical and grain size analysis.
- > Collected groundwater samples in accordance with project workplan;
- > Surveyed wells and boreholes located in the UTM zone number and the easting and northing planar coordinates. Completed an elevation survey of newly installed monitoring wells;
- > Collected sufficient geological and hydrogeological information to characterize subsurface characteristics;
- > Prepared detailed borehole/monitoring well logs that identify characteristics and stratigraphy of the soil, headspace vapour readings, water level and which samples were submitted for specific analysis;
- Complete field reports for each groundwater sampling location including static water levels, well depth and volume measurements, and purge volumes. SNCL field staff collected groundwater sample in laboratory supplied bottles; and
- Through our UXO Sub-consultant, provided clearance of proposed well sites, a sweep of access lanes and work site areas. Work was undertaken following the requirements BGL-381-003/TS-000 Range Clearance and Unexploded Explosive Ordnance (UXO) Activities Manual (interim version April 2011).

3.5 Data Presentation and Reporting

Details of the Baseline Environmental Testing Program has been presented within this formal report. The report includes an executive summary, introduction, a summary of relevant historical information from the Documentation Review, a detailed description of the methods employed, and results obtained, regulatory criteria selection justification, presentation of analytical results including current and historical with comparison to appropriate guidelines, interpretation of findings, assumptions, with the last section a discussion and findings presented in accordance with the SOW.

Appendices include photographs documenting site features and field collection methods; recorded GPS coordinates for all sampling points as well as all natural and anthropogenic site features; bore hole logs documenting soil type, visual observations, headspace OVM readings, and equipment used; copies of all laboratory Certificates of Analyses.

Digital imagery was used as backdrop for drawings and sampling points and site features to clearly displayed spatially. Laboratory data has been summarized in tables including the most applicable environmental quality criteria and/or standards. Where onsite screening methods were used, these results were presented alongside tabulated laboratory data. Laboratory detection limits have been reported for each analysis.

Interpretation includes a Conceptual Site Model (CSM) for the site. Descriptions of soil stratigraphy and characteristics from ground surface to bedrock; depth to bedrock; geology; hydrogeology; depth to water table; surficial drainage patterns; location of onsite infrastructure and probable source(s).

4. Site Description

4.1 Site Location

The Hartlen Point property is located near the Halifax/Dartmouth Metropolitan area within Halifax Regional Municipality. The property is within the community of Eastern Passage and is approximately 7 kilometres (km) East of 12 Wing Shearwater. The property occupies approximately 177 hectares of largely undeveloped land on a small point (Hartlen Point) at the mouth of Halifax Harbour.

As discussed in the Statement of Work (SOW) the proposed Site is in the vicinity of two previously identified contaminated sites (Sites 5550 and 5551).

Figure 4-1: Proposed Construction Site in Hartlen Point, Eastern Passage, NS.

Site 5550 is a former marine beacon, emergency explosive demolition area and small arms firing range, located southeast of Shore Road and the Hartlen Point Golf Course and along the southeastern shoreline, see Figure 4-1.

The original marine beacon site was abandoned when the current building HP151 became operational in 1964, the concrete foundations remain on-site. It is suggested that the former building may have been heated by coal during its era of operation.

The emergency explosives demolition area was also used as a demolition training area in the 1940s and continued to be used as an explosives area until the 1980s. A site investigation was undertaken in 2000 to determine if demolition remains were visible and to sample on-shore and near-shore beach sediments for explosive compounds (OCL, 2000). Explosive parameters (nitro-aromatics) were not reported above laboratory detection limits. No evidence of environmental impact from explosive components was reported.

A former artillery range was initially identified at the Hartlen Point property; however, a later investigation conducted in 2002 concluded that the area was likely a small arms firing range. The investigation was carried out to assess metals and/or petroleum hydrocarbons presence in soil in the general area of the former small arms firing range. Petroleum hydrocarbons were not detected, and metals parameters were identified at levels below the applicable guidelines at the time (CCME 1999; commercial land use).

Site 5551 is occupied by building HP151 and located near the north-west corner of the Site, see Figure 4-1.

Previous environmental concerns associated with the Hartlen Point property are related to fuel storage. A test pit (TP-1) was excavated on the northeast side of building HP151 during a site investigation in 1997 (MGI, 1997). Test Pit TP1 was reported to have been excavated in the vicinity of a pipe protruding from the ground suggesting the possible presence of an underground storage tank (UST). Based on a visual inspection, no UST or subsurface impacts were identified. No samples were submitted for analysis.

4.2 Potential Contaminant Sources

Table 4-1 identifies the area of potential concern (APEC) and the contaminants of potential concern (COPCs) identified during the review of historical reports for Hartlen Point provided by DCC. The SNCL sampling program was developed based on this review.

Site	Area of Potential Environmental Concern	Contaminants of Potential Environmental Concern
Site 5550	Former Marine Beacon, Emergency Explosives Demolition (EOD) Area and Artillery Firing Range (later investigation concluded that the area was likely a small arms firing range).	Soil: metals, petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene, and xylene (BTEX) F1-F4 (PHCs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), explosive compounds Groundwater: Metals, PHCs, PAHs, VOCs
Site 5551	Building HP551 – existing Aboveground Storage Tank (AST) and potential UST	Soil: PHCs Groundwater: PHCs
Assumed location of former small arms range	Along the eastern side of the Site.	Soil: Metals, PHCs

Table 4-1: Areas and Contaminants	of Potential Environmental Concern
Table 4-1. Areas and Containinants	

4.3 Current and Future Land Use

The Site is mostly undeveloped containing shrubs and sparse trees. The only building is Building HP151 located at the Northwest corner of the Site. The proposed future land use includes structure that will be designed to accommodate a land-based training mock-up for the future Canadian frigates (Stantec, 2020). Current and expected future land use at the Site is commercial.

4.4 Surrounding Land Use

The Site is located on a relatively small point at the east entrance to Halifax Harbour, bordered by the Atlantic Ocean to the south and east. The site is bounded by the Eastern Passage-Cow Bay Land-use Classification UR (Urban Rural to the west, and RA (Rural Area to the north). Halifax Regional Municipality Planning Services Environmental Constraint Mapping identifies no local constraints. The surrounding area land-use restrictions are governed by the Halifax Regional Municipality (HRM) Land-Use By-Law, Schedule A. The surrounding area is located within the Municipal Stormwater Service Boundary. Immediately surrounding land use consists of a golf course to the north. The remainder of the area is largely undeveloped consisting of antenna facilities (including a tactical air navigation (TACAN) system – aircraft landing beacon), a gravel helicopter landing pad and a CCG communications tower on the western side of the Site.

4.5 Climatic Information (Temperature, Precipitation)

The Hartlen Point property's exposure to the high energy coastal system makes it vulnerable to constant erosion, hence the continual addition of large size cobbles to the shoreline and redistribution of finer sediments and the development of characteristic eroded bluffs rather than the small rocky beaches are common along the shorelines within the Harbour. Hartlen Point is located within Watershed Division 1EJ-

2SD. The majority of site runoff eventually reaches the Atlantic Ocean at the mouth of Eastern Passage or at Cow Bay (Vaughan Engineering C. Ltd., 1993 pg. 5-14).

4.6 Topography

The Site is generally located in a glacial drumlin field consisting of relatively low elevation rolling hills. Elevations at the Site are reported to range between 0 metres (m) along the shoreline in the south and east to 18 m in the north. A steep bluff is located along the shoreline to the south and topography gently slopes toward the shoreline along the eastern side of the Site.

4.7 Surface Vegetation

Vegetation across the Site was observed to consist of tightly intergrown alders and spruce and fir trees. Grassy areas were identified near the southeast, south, and western margins of the Site.

4.8 Regional and Local Geology

The Hartlen Point property is reportedly underlain by Cambrian to Ordovician age bedrock identified as the Halifax Formation (Donahoe et al., 1989). The bedrock consists of black to rust-brown slate with thin beds and lenses of minor black metasiltstone. It is typically overlain by Quaternary age deposits of glacial till. The overburden stratigraphy over much of the Site was observed to consist of a dense low permeability sandy clay till. Provincial records from water wells completed within approximately 1 km of the Site indicate that overburden thickness may be between approximately 21 to 31 metres below ground surface (mbgs).

4.9 Regional and Local Hydrogeology

Given the thickness of low permeability glacial till within the region it is unlikely the overburden would be exploited as a productive groundwater resource. Groundwater within the region is expected to follow topographic and/or bedrock contours. As a result, groundwater is assumed to flow toward Halifax Harbour or Cow Bay. The nearest resident (Shore Road (900 m) and Sandpiper Drive (850 m) are supplied by municipal water services (ref. Halifax Water Service Boundary Mapping (https://hwc.maps.arcgis.com)

Four (4) water wells are identified on the Nova Scotia Department of Natural Resources water well logs database (<u>https://www.novascotia.ca/nse/groundwater/welldatabase.asp</u>.) to be in the vicinity of the site. All four are located on the Hartlen Point Golf Course property. The four wells were installed in 1988 and 1989 to depths ranging from 200' to 300' (feet). No water usage records were available on the database.

4.10 Surface Water Bodies

The Hartlen Point property is bordered by the Atlantic Ocean to the south and east. Localized wetlands were reported to exist north and west of the site; however, none were observed within the areas investigated a part of this study.

5. Summary of Findings

In preparation of the BETP, SNCL conducted a detailed review of historical reports for the Hartlen Point property, as provided by DCC, Table 5-1 provides a summary of the historical reports.

Table 5-1: Summary of Historical Reports for Hartlen Point

Year	Document No.	Scope	Summary of Findings/Recommendations
	MARL SE Report 10b	A historical Review was completed by mgl for several sites located within the 12 Wing Shearwater main base, Hartlen Point, Osbourne Head and East	With respect to Hartlen Point, a total of 17 potentially contaminated sites were reviewed throughout the Golf Course and Site areas. Of these, a total 14 were identified as potentially contaminated. Within the Hartlen Point property only 2 potentially contaminated sites were identified:
1996	Historical Environmental Review 12 Wing Shearwater, Nova Scotia	Chezzetcook. The purpose of the work was to identify potentially contaminated sites within the Hartlen Point property based on historical activities and to prioritize the sites for additional environmental site investigation.	- Site 5550 (formerly identified as Site 50) (Former Beacon, Emergency Explosives Demolition Area and Artillery Firing Range): Metals and PAH impacts were identified as potential contaminants associated with these activities. The EOD area was interpreted to have been eroded into the shoreline and use of the artillery firing range was identified to have been short lived and replaced by concrete gun emplacements along the western side of the golf course.
			 Site 5551 (formerly identified as Site 51) (Building HP151 - Crash Guard TACAN Building): an existing petroleum AST and potential UST were identified as potential sources of contaminants. These sites were scored moderate to low priority, respectively, for additional site assessment work.
2000	MARL SE Report 367 Additional Site Investigations at 4 Sites: Hartlen Point and Osbourne Head, CFB Halifax, Nova Scotia	OCL undertook investigations at 2 Sites (Site 5550 (formerly identified as Site 50) and 55) previously identified at	The Site was reported to have been used as a demolition site for more than twenty-six (26) years as Emergency Demolition site for ordnance.
		Hartlen Point and 3 Sites (Site 57, 61 and 63) at Osbourne Head. Of these Site 5550 is the only one relevant to this study. The investigation consisted of confirmation of site usage, site inspection to assess the physical state	
			There was no reported evidence of former ordnance disposal either on, or near, the shore. Sediment samples were recovered from the beach and below the water line and analyzed for residual explosive compounds. All parameters were reported to be below the laboratory method detection limit (MDL). No evidence of environmental impact as a result of residual EOD activities was reported.
			Recommendations:
			- No further contaminant delineation required.
			 A Base Order should be issued to officially discontinue EOD activities and ensure no further impact or potential impact on local wildlife or sensitive ecological habitats.
	MARL SE Report 466	Neill and Gunter (Nova Scotia) Limited conducted a Field Survey and	This FS/PQRA of the former small arms range at the Hartlen Point property offered the following conclusions:
2002	FS/PQRA At 4 Sites		 Metals are present within the first metre of soil at our sampling locations. No metal concentrations were found to be above 1999 CCME Commercial guideline values.

Defence Construction Canada | 680449-0001-T-21-REP-000-0001 C01 Baseline Environmental Testing Program to Support the Proposed Construction of CSC LBTF,

	Former DND Coastal Installation at Hartlen Point	Hartlen Point property between December 14, 2001 and January 18, 2002. The former small arms range was the only site relevant to this study.	 Petroleum hydrocarbons, benzene, toluene, ethyl-benzene, and xylene (BTEX) concentrations yielded non-detectable results at all submitted sample locations. The site is considered a low priority. Based on the National Classification System, the site score is 31. Based on the score, the site is a Class N; Action Not Likely Required.
		The FS/PQRA at the Former Small Arms Range consisted of drilling nine hand augers to determine the possibility of metals and/or petroleum hydrocarbon contamination across the site.	 Based on these conclusions the FS/PQRA recommended that: No further action is recommended for this site. Based on the laboratory results of this FS/PQRA they were led to believe this site could be considered "Green", unless any further investigation provides evidence to the contrary.
2018	HX090005 Natural Resource Management Plan Hartlen Point, Maritime Forces Atlantic	WSP completed a Natural Resource Management Plan (NRMP) for the Hartlen Point property over a 5-year span. Their work included a compilation of known natural resources data for the property, additional inventory to fill gaps within the study timeframe, recommended natural resource management or mitigation measures and determination of relevant sustainability and biodiversity indicators.	Recommendations of their findings include habitat management options but do not pertain to contaminants site management. Water quality analysis for all surface water samples show elevated levels of chemical – physical parameters consistent with the use of pesticides, fertilizers or herbicides which could be used for maintenance of the greens at the nearby golf course.
2020	Geotechnical Letter Report – Proposed Development, Hartlen Point, Shearwater, Nova Scotia File: 133431906	The scope of this work was reported by Stantec to provide recommendations for the proposed development of a Land Based Training Facility (LBTF) at Hartlen Point. The recommendations were based upon ten test pits at various locations to characterize the conditions throughout the Site.	Recommendations included excavation and fill placement, excavation slopes, groundwater control and foundation design and soil parameters to be considered in the LBTF design.
2020	Final Concept Report – Irving Shipbuilding Inc. – Land Based Test Facility	The purpose of the study was reported by Stantec to develop the preferred architectural option, and the supporting engineering option. The scope was outlines as follows:	 Complete a supplemental wetland delineation and wetland functional assessment to map and document the functions of wetlands in the project area. Complete a supplemental botanical survey to determine the presence of plant Species of Conservation Concern (SOCC) (3 potential species identified in NRMP) in the project area.

Defence Construction Canada | 680449-0001-T-21-REP-000-0001_C01 Baseline Environmental Testing Program to Support the Proposed Construction of CSC LBTF, Hartlen Point, Eastern Passage, Nova Scotia

- Part 1 includes the project development phase:	found in or near the project area whose populations were once considered to be secure are now listed a
o Pre-Design	SOCC or species at risk and complete an up-to-date breeding survey completed, if necessary.
o Statement of	 Relocate the Osprey nest pole once the Osprey nesting season is over.
Construction Requirements (SOCR)	 Assess stability and potential for coastal erosion and climate change effects.
• Concept Design (including Construction	- Complete an archeological review and develop a contingency plan for potential to encounte archeological/historical resources.
- Part 2 – Detailed Design:	- Complete an assessment for potential for unexploded ordnance (UXO) to be present and what impact that will have on site development.
 Part 2 – Detailed Design. O Design Development 	- Geotechnical assessment should consider potential for pyritic slate to be present.
 Construction Documents Part 3 – Implementation Phase: 	- Impacted material (metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, volatile organi compounds) may be present in area of CS5550 southeast of proposed building (fenced area); further review is recommended, and potential assessment to quantify impacted material and manage either through off-site
• Construction	disposal or onsite in accordance with MARLANT SEMS Directive #E2.
 Post Construction 	 Review Indigenous Community Engagement requirements with MARLANT and/or DND Indigenous Affair Secretariat in consideration of the Aboriginal Consultation and Accommodation: Updated Guidelines for Federal Officials to Fulfill the Legal Duty to Consult.
	- Mitigative measures for concept design include:
	 design considerations to limit migratory bird strikes.
	 disturbance of natural habitat to be avoided or planned accordingly.
	 Erosion and sediment control to protect watercourses/habitat. Timing/planning work on or nea watercourses with Department of Fisheries and Oceans (DFO).
	In accordance with MARLANT SEMS Directive #E3, consultation with relevant federal, provincial and/or municipal departments will be completed by MARLANT staff during the Environmental Effects Determinatio (EED) process. Permitting can be expected with Transport Canada for the helipad, and relevant federal departments for any radiofrequency permitting or proprietary emitters associated with the operations (e.g. Coast Guard and Spectrum Management (through Innovation, Science and Technology Developmer Canada may be applicable). Interaction with Halifax Regional Municipality (HRM), NS Power and Halifa Water will be completed for utility connection and design. Aboveground storage tanks will be federall regulated. Interaction with provincial and federal departments may occur if wetland will be altered of impacted.
	 Directive #E3 is based on the requirements of CEAA, 2012 which was repealed. Directive #E3 has not bee updated to reflect the Impact Assessment Act (IAA) of 2019. Under the new IAA, factors to be considered in the planning and permitting of this project include the following: the requirement to post a notice of intent on the website for public comment before making a determinetion (continue 96(4)). Note the grad is perviously index and is highly with least highly with l

			• the requirement to post a notice of determination outlining mitigation and consideration of the comments received (section 86(2))
			The Practitioners Guide to the Impact Assessment Act is in draft form; there may be changes in the approach DND or other federal departments use in their planning, assessment and permitting processes.
			 Although the locations of the former artillery range, small arms range and EOD area at Site 5550 (formerly identified as Site 50) remain unclear, it was concluded that the site was assessed, and no further action was required.
	Summary of Environmental Considerations Proposed Canadian Surface Combatant Land Based Test Facility, Hartlen Point, Eastern Passage, Nova Scotia	The DCC report consists of a preliminary review of environmental considerations associated with the proposed LBTF site. Issues related to contaminated sites, wildlife/vegetation including species at risk, wetlands, and surface water were reviewed.	 Test pitting reportedly completed by mgl in 1997 at Site 5551 (formerly identified as Site 51) to investigate potential petroleum impacts related to a former AST. Based upon visual inspection of soil within the test pit it was concluded that the site was assessed, and no further action was recommended.
			 Soil sampling for petroleum hydrocarbon, polycyclic aromatic hydrocarbon, inorganic metals, and volatile organic compounds should be considered during project planning to confirm disposal options for surplus excavated/unsuitable soil during construction.
			 Appropriate measures must also be implemented if stockpiling pyritic slate to limit the potential for acid bearing water leaching into the ground and/or stormwater systems or entering freshwater aquatic habitat.
2020			- Any disturbance of natural habitat should consider potential impacts to SAR species.
			 Schedule vegetation clearing activities for the fall or winter to avoid nesting periods.
			 Disturbance of soil and rock onsite should be conducted in a manner that will protect the identified aquatic resources. Standard sediment and erosion protocols should be implemented.
			 Avoid working in watercourses to the extent possible; follow the hierarchy of avoid, mitigation and compensation if it is unavoidable.
			 If archaeological/historical artifact(s) are encountered at the Hartlen Point property, activities must be suspended and the appropriate authorities contacted (e.g., Naval Museum of Halifax, Nova Scotia Department of Communities, Culture & Heritage). Resources should be evaluated by a professional archaeologist.
			- Based on the history of the area, it is recommended that a UXO risk assessment/survey be conducted at the Hartlen Point property prior to construction.
			 It is recommended that requirements for public and Aboriginal consultation be considered at the planning stage of any project.
			 With respect to radio frequency (RF), consultation will be required with DRDC, Coast Guard and Naval Electronic Systems Test Range Atlantic (NESTRA) Range to evaluate the RF radiated once it is known with which RF and Laser system the LBTF will be fitted. An RF license will be required from the Spectrum Office (Ottawa) for the LBTF.

6. Preliminary Conceptual Site Model (CSM)

SNCL has prepared a Preliminary Conceptual Site Model (CSM), presented through an exposure pathway analysis and resultant CSM figure presented in Appendix D. The CSM includes information related to the Site geologic and hydrogeologic setting, identifies the contaminants of potential concern (COPCs), identified human and ecological receptors of concern (ROCs) and identifies associated potential risks to human health and the environment under current and future land uses. No adverse effects were identified for human health or the environment in the CSM from residual contamination at the Site.

7. Regulatory Framework

Provincial and Federal guidelines (where applicable) have been used to evaluate the environmental quality of the soil and groundwater samples collected within the area of investigation. The site-specific information presented in Table 7-1 was used to select regulatory criteria for comparison to soil and groundwater quality within the area of investigation.

- Land Use	The Hartlen Point property is Commercial in nature. It is owned by the Department of National Defence and was developed as a coastal defence site.
Future Land Use	Federal Facility / Commercial.
Potable Water Supply	Non-potable.
- Soil Texture	Fine grained – Based on site observations and grain size analysis of several samples, surface soil at the Site has been identified as fine grained (refer to Appendix B for analytical results).
Overburden	Most soil observed at the Site was described in the field to consist of fine grained glacial till composed of silt with some sand, gravel, and clay.
Closest Water Body	The Hartlen Point property is bordered by the Atlantic Ocean to the south and east.

Table 7-1: Site Specific Information for Determining Applicable Regulatory Guidelines

7.1 Federal Guidelines

Soil

Based on the site-specific information in Table 7-1, analytical results for soil samples collected within the area of investigation were compared with the following federal guidelines for the assessment of metals, TPH, PAHs, VOCs and PFAS:

- Canadian Council of Ministers of the Environment (CCME), 1999 as updated, Canadian Environmental Quality Guidelines (CEQG), Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health for Commercial Land Use, Fine Grained Soils.
- > CCME Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil: Scientific Rationale, Supporting Technical Document, commercial land use, fine grained soil (CCME, 2008).

- > MARLANT Surface Soil Screening Criteria (SSC) for metals and PAHs, March 2015, for restricted commercial, based on proposed use of the Site.
- Health Canada (HC) Summary Table: Health Canada Draft Guidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS), Soil Screening Values (SSV), commercial land use, (HC, 2019). The Health Canada guidelines include SSV protective of human health for 11 PFAS parameters and a calculated (PFOS + PFOA) index calculated as the sum of the ratios of measured PFOS and PFOA concentrations to their respective SSV.
- Interim Advice to Federal Custodian Departments for the Management of Federal Contaminated Sites Containing Perfluorooctane Sulfonate (PFOS) and other Per-and Polyfluoroalkyl Substances (PFAS), April 2018 (Version 1.4.1). Federal Environmental Quality Guidelines (FEQGs) for PFOS in soil for various ecological exposure pathways (Appendix I, Table 2).
- Contaminated Sites Instruction (CSI.004.001) Soil Management 2020. PFAS guidelines included within this document were also used to screen laboratory analytical data. However, given the CCME guidelines are more extensive, the CCME guidelines have been referenced in addition to these with the appropriate analytical summary tables.

It is noted that for the protection of Environmental Health from non-carcinogenic effects of PAHs, the soil quality guideline for environmental health (SQGE) was used for each PAH compound, where available. In the absence of a SQGE, the protection of freshwater life guideline (SQGFL) was used followed by the interim soil quality criteria (CCME 1991) when available. For the PAH parameter Chrysene, the soil and food ingestion guideline were used as this was the only listed guideline available for this parameter.

There is no single final CCME Soil Quality Guideline for any of the PAHs that will protect both human and environmental health. To ensure that both human and ecological receptors are protected, the user must:

- > Calculate a Benzo[a]pyrene Total Potency Equivalents (B[a]P TPE) to ensure that humans are protected from direct contact with soil contaminated with carcinogenic PAHs;
- > Calculate the Index of Additive Cancer Risk (IACR) to ensure that potable water resources are protected from carcinogenic PAHs; and
- > Consider all relevant guidelines to protect ecological receptors from non-carcinogenic effects for the land use in question.

Groundwater

Based on the site-specific information above, analytical results for groundwater samples were compared with the following Federal guidelines for the assessment of Metals, TPH, PAHs, VOCs and PFAS:

- Federal Contaminated Sites Action Plan (FCSAP), Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGQG) for Federal Contaminated Sites (Metals, TPH, PAHs and VOCs).
- > CCME Canadian Environmental Quality Guidelines (CEQGs) Water Quality Guidelines for the Protection of Freshwater Aquatic Life (1999 as updated) (Metals, TPH and PAHs).
- > Health Canada Drinking Water Screening Values for other PFAS (April 2019) (PFAS).
- > Health Canada Guideline for Canadian drinking water quality maximum acceptable concentrations (MACs) for PFOS and PFOA (April 2019) (PFAS).

Interim Advice to Federal Custodian Departments for the Management of Federal Contaminated Sites Containing Perfluorooctane Sulfonate (PFOS) and other Per-and Polyfluoroalkyl Substances (PFAS), April 2018 (Version 1.4.1). Federal Environmental Quality Guidelines (FEQGs) for PFOS in groundwater for various ecological exposure pathways.

It should be noted that, although groundwater at the Site is non-potable, the HC DWSVs/DWQGs were conservatively used to screen groundwater collected at the Site and assess potential for risk to construction workers, DND maintenance workers and site visitor receptors as there are no human health guidelines specifically for dermal contact pathways.

7.2 Provincial Guidelines

Soil

Based on the site-specific information in Table 7-1, analytical results for soil samples collected from the Site were compared with the following Provincial guidelines listed below:

- Atlantic Risk Based Corrective Action for Petroleum Impacted Sites in Atlantic Canada (Version 3, updated January 2015) - Tier 1 Risk Based Screening Levels for Soil (Commercial, fine-grained, and Non-potable water criteria);
- Provincial Atlantic Risk Based Corrective Action for Petroleum Impacted Sites in Atlantic Canada (Version 3, updated January 2015) - Commercial Tier 1 Soil Ecological Screening Levels for the Protection of Plants and Soil Invertebrates; Direct Soil Contact, and
- Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained),

Groundwater

Analytical results for groundwater samples were compared with the following Provincial guidelines for TPH/BTEX:

> Atlantic RBCA Tier I Risk Based Screening Levels for Groundwater (July 2012, revised January 2015).

8. Methodology

8.1 Site Reconnaissance

The site reconnaissance was completed on March 8, 2021. It included observations of the Site to confirm the locations of several activities of potential concern, activities noted from the desktop information review and documented current land uses. The Site was surveyed on foot. Physical evidence of many of the reported former features was not observed during the visit. The location of the concrete pad which supported the former AST at HP151 was observed. A concrete pad, former foundation (undermined along the bluff) and concrete support wire anchors and guy wire anchors were observed near the bluff along the south side of the Site.

8.2 Utility Locates

Underground utility and UXO clearance were provided by MacIsaac Drilling, All Clear UXO and DND. Clearance took place at each of the proposed borehole or monitoring well locations at the Hartlen Point property on March 8 and 10, 2021. Potential underground services and UXOs were cleared within a 3 m radius of the proposed sampling location. Due to the reported potential to encounter UXO, all drill access pathways were cleared for UXO presence.

8.3 Borehole and Monitoring Well Installation

The borehole and monitoring well location plans were designed to assess areas of potential environmental concern identified within the previous reports provided by DCC and to provide baseline environmental soil and groundwater testing within and near the construction footprint of the proposed LBTF development. Each borehole and groundwater monitoring well was positioned to determine the presence of metals, PHCs, PAHs, VOCs and PFAS in soil and groundwater within the areas investigated.

The drilling program was carried out between March 15 and 22, 2021. The program consisted of six (6) boreholes (S5551-21BH01 to S5551-21BH06 inclusive) and six (6) monitoring wells (S5551-21MW01 to S5551-21MW06 inclusive) drilled to depths between 2.9 m and 9.1 mbgs with a track mounted continuous flight auger rig using solid stem augers.

Boreholes were backfilled with a mixture of bentonite and drill cuttings. Monitoring wells were completed as Polyvinyl chloride (PVC) plastic wells constructed with 0.05 m diameter PVC casing and slotted screen. Silica sand was installed across the monitoring well intake screen. A 0.6 m bentonite seal was installed in each of the monitoring wells approximately 0.3 m above the bentonite seal to prevent infiltration of surface water. The remainder of the monitoring well was backfilled with a mixture of bentonite, drill cuttings and silica sand to surface. Access to each monitoring well was sealed with a lockable PVC J-Plug. As the well locations are not directly accessible to the public, and will be removed during site development, the PVC casing stickups were unprotected in all monitoring wells except S5551-21MW01 (located near Building HP151), at which a lockable steel protective casing was installed. Each monitoring well was subsequently surveyed, and coordinates located in the UTM zone number and the easting and northing planar coordinate pair in that zone. Locks were subsequently installed on all well J-plugs.

Care was taken not to allow the monitoring well construction materials to lay on the ground. A new pair of nitrile gloves were used during each monitoring well installation.

The locations of these boreholes and monitoring wells are illustrated on the attached Figures 2 and 3 (Appendix A) in relation to the historic and proposed site features and boundaries. Borehole and monitoring well logs are illustrated in Appendix C.

8.3.1 Assessment Rationale

A total of six (6) boreholes and six (6) groundwater monitoring wells were completed during the Site Assessment. The holes were located to investigate onsite soil conditions, potential impacts from historical operations identified during the document review and proposed future site infrastructure as well as to permit the recovery of representative soil and groundwater samples for laboratory analyses. The rationale for borehole locations and monitoring wells for the site investigation is presented in Table 8-1 below.

Monitoring Wells	Target Area
S5551-21MW01	Site 5551 (formerly identified as Site 51) - reported former AST at Building HP151
S5551-21MW02	Site 5550 (formerly identified as Site 50) - former Small Arms Range
S5551-21MW03	Baseline conditions near proposed office trailers
S5551-21MW04	Baseline conditions at proposed parking lot
S5551-21MW05	Baseline conditions beneath proposed building footprint
S5551-21MW06	Baseline conditions near east side of the Site and former gun emplacements
Boreholes	Target Area
S5551-21BH01	Baseline conditions at proposed generator and fuel tank location

Table 8-1: Rationale for and Location of Boreholes and Monitoring Wells

S5551-21BH02	Baseline conditions near proposed office trailers
S5551-21BH03	Baseline conditions beneath proposed building footprint, near proposed sewage lift station and cooling towers 1 and 2
S5551-21BH04	Baseline conditions near north corner of the Site, former gun emplacements
S5551-21BH05	Baseline conditions beneath proposed building footprint
S5551-21BH06	Baseline conditions near east side of the Site and former gun emplacements

8.4 Drilling and Soil and Sampling Program

Soil and groundwater sampling were carried out at each applicable location. The program included the advancement of twelve (12) boreholes, six (6) of which were completed as groundwater monitoring wells. The locations of each borehole and monitoring well are identified on Figures 2 and 3, Appendix A.

Soil Sampling

Drilling activities were completed by Logan Drilling of Stewiacke, NS and soil collection and soil preparation for analytical testing was completed by the project team during drilling activities at each borehole. Soil samples were recovered for selected PHCs, VOC, PAH, Metals, PFAS and grain size laboratory analyses.

Soil samples were typically collected at 0.6 m continuous depth intervals throughout the advancement of each borehole using 0.05 m diameter split spoon sampler. Although it was planned that the first sample from each borehole was to be recovered between 0 to 0.15 m depth, the lack of sample volume due to poor recovery, required these samples to be recovered between 0 to 0.3 m depth. In some instances, the full 0.6 m surface sample interval was required to fill the necessary laboratory containers. In some cases, slight deviation from MARLANT SOP field procedures were required to ensure sample integrity, specifically sampling was adjusted to avoid inclusion of surficial organic material.

A new pair of nitrile gloves was used to handle and recover each sample. Samples were logged in the field for depth, composition, moisture, plasticity, consistency, color, and additional comments were provided where necessary. Where possible, standard penetration test (SPT) values were recorded for each 0.15 m of spoon penetration. Additional grab samples were recovered directly from the augers if deemed necessary in the field.

To provide an indication of potential impacts related to the former operation, storage and handling of petroleum at the Site, soil samples recovered during the drilling program were field screened for soil vapours using ambient temperature headspace (ATH) technique. A portion of the soil sample was placed into appropriate clean laboratory supplied sample containers together with appropriate preservative if required. The remainder of the soil was placed into a laboratory supplied clean bag for ATH screening.

The ATH measurements were recorded with a handheld Minirae 3000 Photoionization Detector (PID) portable hydrocarbon vapour detector calibrated to hexane. The ATH technique involved half filling and sealing a plastic bag with soil and allowing the vapours to accumulate for approximately fifteen to twenty minutes prior to analyzing the headspace. Accumulated vapours were measured in parts per million total organic vapours (ppm). After completion of sampling and ATH measurements, all samples were stored in a cooler with ice until transportation to the laboratory.

Given the potential for contamination of samples recovered for PFAS analysis, precautions were employed throughout the sampling program in accordance with MARLANT SOP 16. The split spoons were cleaned prior to commencing the drilling program and after each sample was recovered. A clean pair of nitrile gloves was worn during each step of the decontamination process to reduce cross-contamination. Drilling water was not required as all holes were installed by auger, not a rotary drill. The sampling equipment was cleaned between each borehole location and after each split spoon. While wearing a new pair of nitrile gloves, field equipment was decontaminated according to the process outlined below:

- > The equipment was rinsed with Liquinox;
- > rinsed with laboratory-supplied PFAS free water;
- > rinsed with methanol; and finally
- > rinsed again with laboratory-supplied PFAS free water.

The field protocols and QA/QC procedures utilized by SNCL were in accordance with MARLANT SOPs and standard industry protocols, with the exception of field data naming conventions related to SOP 13, which were not required in the SOW; and slight deviations were required to ensure sample integrity, specifically sampling of the 0-0.6 mbgs layer was adjusted to avoid inclusion of surficial organic material.

 Table 8-2: Borehole and Monitoring Well Location and Soil Sampling Information

Borehole/ Monitoring Well ID	Location	Analyses	Depth (mbgs)	Sample ID	Sample Depth (mbgs)
		Metals, PAHs, PFAS		S5551-21BH01-01	0-0.6
			-	S5551-21BH01-02	0.6-1.2
			-	S5551-21BH01-03	1.2-1.8
		PHCs, VOCs	-	S5551-21BH01-04	1.8-2.4
S5551- 21BH01	4940201 N 25583749 E		4.9	S5551-21BH01-05	2.4-3.1
2101101	20000740 L		-	S5551-21BH01-06	3.1-3.7
			-	S5551-21BH01-07	3.7-4.3
		Metals, PFAS	-	S5551-21BH01-08	4.3-4.9
		Metals, PAHs, PFAS	-	S5551-21BH01-09 (DUP of S5551-21BH01-01)	0-0.6
		Metals, PAHs		S5551-21BH02-01	0-0.6
			-	S5551-21BH02-02	0.6-1.2
			-	S5551-21BH02-03	1.2-1.8
S5551-	4940281 N		4.0	S5551-21BH02-04	1.8-2.4
21BH02	25583695 E	PHCs, VOCs	4.9	S5551-21BH02-05	2.4-3.1
			-	S5551-21BH02-06	3.1-3.7
			-	S5551-21BH02-07	3.7-4.3
		Metals, PAH	-	S5551-21BH02-08	4.3-4.9
		Metals, PAHs, PFAS		S5551-21BH03-01	0-0.6
			-	S5551-21BH03-02	0.6-1.2
S5551- 21BH03	4940253 N 25583773 E	PHCs, VOCs	4.2	S5551-21BH03-03	1.2-1.8
			-	S5551-21BH03-04	1.8-2.4
			-	S5551-21BH03-05	2.4-3.1

Borehole/ Monitoring Well ID	Location	Analyses	Depth (mbgs)	Sample ID	Sample Depth (mbgs)
				S5551-21BH03-06	3.1-3.7
		Metals, PAHs, PFAS	-	S5551-21BH03-07	3.7-4.3
		Metals, PAHs, PFAS		S5551-21BH04-01	0-0.6
			-	S5551-21BH04-02	0.6-1.2
			-	S5551-21BH04-03	1.2-1.8
S5551- 21BH04	4940350 N 25583799 E		2.9	S5551-21BH04-04	1.8-2.4
	20000100 2	Metals, PHCs, VOCs	-	S5551-21BH04-05	2.4-3.1
		Metals, PHCs, VOCs, PFAS	-	S5551-21BH04-08 (DUP of S5551-21BH04-05)	2.4-3.1
		Metals, PAHs	-	S5551-21BH04-09 (DUP of S5551-21BH04-01)	0-0.6
		Metals, PAHs, PFAS		S5551-21BH05-01	0-0.6
0000.			-	S5551-21MW05-02	0.6-1.2
			-	S5551-21BH05-03	1.2-1.8
	4940150 N		-	S5551-21BH05-04	1.8-2.4
	25583832 E		6.1	S5551-21BH05-05	2.4-3.1
			-	S5551-21BH05-06	3.1-3.7
		Metals, PHCs, PAHs, VOCs	-	S5551-21BH05-07	3.7-4.3
		Metals, PAHs,	-	S5551-21BH05-08	4.3-4.9
		Metals, PAHs		S5551-21BH06-01	0-0.6
			_	S5551-21BH06-02	0.6-1.2
			_	S5551-21BH06-03	1.2-1.8
			_	S5551-21BH06-04	1.8-2.4
S5551-	4940146 N 25583950 E		4.9	S5551-21BH06-05	2.4-3.1
21BH06		PHCs, VOCs	_	S5551-21BH06-06	3.1-3.7
			_	S5551-21BH06-07	3.7-4.3
		Metals, PAHs	_	S5551-21BH06-08	4.3-4.9
		Metals, PAHs		S5551-21BH06-09 (DUP of S5551-BH06-08)	4.3-4.9
		Metals, PAHs		S5551-21MW01-21SS-01	0-0.6
S5551-	4940138 N	PHCs, VOCs	0.1	S5551-21MW01-21SS-02	0.6-1.2
21MW01	25583671 E		9.1	S5551-21MW01-21SS-03	1.2-1.8
				S5551-21MW01-21SS-04	1.8-2.4

Defence Construction Canada | 680449-0001-T-21-REP-000-0001_C05 Baseline Environmental Testing Program to Support the Proposed Construction of CSC LBTF, Hartlen Point, Eastern Passage, Nova Scotia

Borehole/ Monitoring Well ID	Location	Analyses	Depth (mbgs)	Sample ID	Sample Depth (mbgs)
				S5551-21MW01-21SS-05	2.4-3.1
			-	S5551-21MW01-21SS-06	3.1-3.7
			-	S5551-21MW01-21SS-07	3.7-4.3
		Metals, PAHs	-	S5551-21MW01-21SS-08	4.3-4.9
		Metals, PAHs, PFAS		S5551-21MW02-21SS-01	0-0.6
			_	S5551-21MW02-21SS-02	0.6-1.2
		PHCs, VOCs	-	S5551-21MW02-21SS-03	1.2-1.8
05554	4020008 N		_	S5551-21MW02-21SS-04	1.8-2.4
S5551- 21MW02	4939998 N 25583823 E		- 6.4	S5551-21MW02-21SS-05	2.4-3.1
			-	S5551-21MW02-21SS-06	3.1-3.7
			_	S5551-21MW02-21SS-07	3.7-4.3
		Metals, PFAS	-	S5551-21MW02-21SS-08	4.3-4.9
		Metals, PAHs	_	S5551-21MW03-21SS-01	0-0.6
			_	S5551-21MW03-21SS-02	0.6-1.2
			_	S5551-21MW03-21SS-03	1.2-1.8
S5551-	4940230 N		_	S5551-21MW03-21SS-04	1.8-2.4
21MW03	25583668 E		4.9	S5551-21MW03-21SS-05	2.4-3.1
		Metals, PHCs, PAHs, VOCs	_	S5551-21MW03-21SS-06	3.1-3.7
			_	S5551-21MW03-21SS-07	3.7-4.3
				S5551-21MW03-21SS-08	4.3-4.9
		Metals, PAHs	_	S5551-21MW04-21SS-01	0-0.6
			_	S5551-21MW04-21SS-02	0.6-1.2
			_	S5551-21MW04-21SS-03	1.2-1.8
S5551-	4940088 N 25583761 E		4.9	S5551-21MW04-21SS-04	1.8-2.4
21MW04		PHCs, VOCs	-	S5551-21MW04-21SS-05	2.4-3.1
			_	S5551-21MW04-21SS-06	3.1-3.7
			_	S5551-21MW04-21SS-07	3.7-4.3
		Metals, PAHs		S5551-21MW04-21SS-08	4.3-4.9
		Metals, PAHs, PFAS		S5551-21MW05-21SS-01	0-0.6
				S5551-21MW05-21SS-02	0.6-1.2
S5551- 21MW05	4940208 N 25583832 E		4.3	S5551-21MW05-21SS-03	1.2-1.8
		PHCs, VOCs	_	S5551-21MW05-21SS-04	1.8-2.4
			_	S5551-21MW05-21SS-05	2.4-3.1

Borehole/ Monitoring Location Well ID		cation Analyses		Sample ID	Sample Depth (mbgs)	
				S5551-21MW05-21SS-06	3.1-3.7	
		Metals, PAHs	_	S5551-21MW05-21SS-07	3.7-4.3	
		Metals, PAHs, PFAS		S5551-21MW06-21SS-01	0-0.6	
			_	S5551-21MW06-21SS-02	0.6-1.2	
		PHCs, VOCs	-	S5551-21MW06-21SS-03	1.2-1.8	
			-	S5551-21MW06-21SS-04	1.8-2.4	
S5551-	4940262 N			S5551-21MW06-21SS-05	2.4-3.1	
21MW06	25583891 E		- 8.2	S5551-21MW06-21SS-06	3.1-3.7	
			-	S5551-21MW06-21SS-07	3.7-4.3	
		Metals	-	S5551-21MW06-21SS-08	4.3-4.9	
		Metals, PFAS	_	S5551-21MW06-21SS-09 (DUP of S5551-21MW06-21SS-01)	0-0.6	
		PFAS	_	S5551-21MW06-21 Grab-01	7.9-8.2	

Groundwater Monitoring and Sampling Program

The groundwater monitoring program included the following activities (in order):

- > April 13, 2021: measurement of water levels and developing monitoring wells;
- > April 22, 2021: measurement of water levels and purging monitoring wells;
- > April 23, 2021: measurement of water levels and sampling of monitoring wells for laboratory analysis.

Monitoring Well Development

Monitoring well development was carried out in accordance with MARLANT SOP 15 (Monitoring Well Development). Given the fine-grained nature of the overburden and apparent low permeability, well development was carried out 22 days (April 13, 2021) after completion of all monitoring well installations. The procedure is briefly summarized below:

- Prior to development, static water level was measured in the monitoring well and the absence of Non-Aqueous Phase Liquids (NAPL) was verified.
- Using a clean pair of nitrile gloves, a dedicated Teflon free High-Density Polyethylene (HDPE) bailer was carefully lowered down the well until it entered the water column then subsequently removed and emptied into a 5-gallon pail.
- > Well development was undertaken until either 5 well volumes were removed, or the well was bailed consistently dry.
 - S5551-21MW01 was dry. No groundwater entered the well.
 - S5551-21MW02, -21MW03, -21MW04 and -21MW05 were bailed dry without recovering more than 2 well volumes and waiting for recovery of the wells to at least within 80% of static water level was estimated in the field to be impractical.

- DCC was contacted to discuss the findings and it was determined that wells which provided sufficient water volume after purging would be sampled (confirmed in email correspondence with Jaime Darrow, April 20, 2021).
- > Groundwater collected in the pail was discarded away and down gradient from each monitoring well.

Groundwater level measurements were carried out using an oil/water interface probe (Solinst Model 122). Gauging was conducted by lowering the clean probe down into each well until a tone was obtained indicating a liquid had been contacted. The depth at which a tone was first sounded was then carefully noted to the nearest millimeter. The groundwater volume was calculated based on the casing diameter and the height of water in each monitoring well.

As discussed in Section 8.4.1 above, decontamination procedures employed during this process are summarized as follows:

A clean pair of nitrile gloves was worn during each step of the decontamination process to reduce crosscontamination. The sampling equipment was cleaned between each borehole location and after each split spoon. While wearing a new pair of nitrile gloves, field equipment was decontaminated according to the process outlined below:

- > The equipment was rinsed with Liquinox;
- > rinsed with laboratory-supplied PFAS free water;
- > rinsed with methanol; and finally
- > rinsed again with laboratory-supplied PFAS free water.

Groundwater Purging

Prior to recovery of groundwater samples, the monitoring wells were purged manually on April 22, 2021 using a dedicated HDPE bailer. A maximum of three (3) times the dry volume from each well was removed during the purging process.

The procedure is briefly summarized below:

- > Prior to development, static water level was measured in the monitoring well and the absence of Non-Aqueous Phase Liquids (NAPL) was verified.
- > Using a clean pair of nitrile gloves, a dedicated Teflon free HDPE bailer was carefully lowered down the well until it entered the water column then subsequently removed and emptied into appropriate laboratory supplied sample containers.
- > Well development was undertaken until either 3 well volumes were removed, or the well was bailed consistently dry.
 - S5551-21MW01 was dry. No groundwater entered the well.
 - S5551-21MW02, -21MW03, -21MW04 and -21MW05 were bailed dry without recovering more than 2 well volumes and waiting for recovery of the wells to at least within 80% of static water level was estimated in the field to be impractical.
 - DCC was contacted to discuss the findings and it was determined that wells which provided sufficient water volume after purging would be sampled.
- > Groundwater collected in the pail was discarded away and down gradient from each monitoring well.

Groundwater level measurements were carried out using an oil/water interface probe (Solinst Model 122). Gauging was conducted by lowering the clean probe down into each well until a tone was obtained indicating a liquid had been contacted. The depth at which a tone was first sounded was then carefully

noted to the nearest millimeter. The groundwater volume was calculated based on the casing diameter and the height of water in each monitoring well.

As discussed in Sections 8.4.1 and 8.4.4 above decontamination the procedure employed during this process is summarized as follows:

A clean pair of nitrile gloves was worn during each step of the decontamination process to reduce crosscontamination. The sampling equipment was cleaned between each monitoring well location and after each split spoon. While wearing a new pair of nitrile gloves, field equipment was decontaminated according to the process outlined below:

- > The equipment was rinsed with Liquinox;
- > rinsed with laboratory-supplied PFAS free water;
- > rinsed with methanol; and finally
- > rinsed again with laboratory supplied PFAS free water.

Groundwater Sampling

Groundwater samples were recovered on April 23, 2021 from S5551-21MW03, -21MW05, and -21MW06. Insufficient groundwater volume had been recovered in S5551-21MW01, -21MW02 and -21MW04. No groundwater was observed in S5551-21MW01. Static water levels were measured in each of the monitoring wells prior to sample recovery.

The procedure is briefly summarized below:

- > Prior to development, static water level was measured in the monitoring well and the absence of Non-Aqueous Phase Liquids (NAPL) was verified.
- Using a clean pair of nitrile gloves, a dedicated Teflon free HDPE bailer was used to carefully lower down the well until it entered the water column then subsequently removed and emptied into appropriate laboratory supplied sample containers. Inline 40-micron filters were employed to filter groundwater samples for metals analysis.
- Where possible the MARLANT SOP field protocols were followed. There were cases where surface soil contained organic material (humus etc.) sampling was adjusted to avoid inclusion of organic material which would have skewed the analytical results.

Groundwater level measurements were carried out using an oil/water interface probe (Solinst Model 122). Gauging was conducted by lowering the clean probe down into each well until a tone was obtained indicating a liquid had been contacted. The depth at which a tone was first sounded was then carefully noted to the nearest millimeter. Groundwater levels were measured on April 13/21 (shown on Borehole logs), again on April 23/21 prior to bailing and on April 23/21 prior to sampling. The groundwater volume was calculated based on the casing diameter and the height of water in each monitoring well.

As discussed in Sections 8.4.1, 8.4.4 and 8.4.5 above, the decontamination procedure employed during this process is summarized as follows:

A clean pair of nitrile gloves was worn during each step of the decontamination process to reduce crosscontamination. The sampling equipment was cleaned between each borehole location and after each split spoon. While wearing a new pair of nitrile gloves, field equipment was decontaminated according to the process outlined below:

- > The equipment was rinsed with Liquinox;
- > rinsed with laboratory-supplied PFAS free water;
- > rinsed with methanol; and finally

> rinsed again with laboratory supplied PFAS free water.

A new pair of Nitrile gloves was used for each well and equipment was cleaned as outlined above before and after completing the sampling at each of the wells.

The groundwater samples were packed with ice and stored in an insulated cooler while on-site and during transport to AGAT Laboratory in Dartmouth, NS together with appropriate chain of custody documentation. The field protocols and QA/QC procedures utilized by SNCL during site monitoring were in accordance with MARLANT SOPs and standard industry protocols. Table 8-3 below provides location and analysis information of the groundwater sampling conducted as part of the investigation.

Monitoring Well	Location (NAD 83 UTM)	GW Depth (mbgs) Apr 13/21	GW Depth (mbgs) Apr 22/21	GW Depth (mbgs) Apr 23/21	Well Depth (mbgs)	Analyses (Apr 23/21)	Sample ID (Apr 23/21)
S5551-21MW01	4940138 N 25583671 E	– (Dry)	– (Dry)	– (Dry)	9.1	_	_
S5551-21MW02	4939998 N 25583823 E	6.16	6.10	6.105	6.4	_	-
S5551-21MW03	4940230 N 25583668 E	0.25	0.45	0.45	4.9	Metals, PHCs, PAHs, VOCs, PFAS	S5551-21MW03-21GW-01
S5551-21MW04	4940088 N 25583761 E	2.80	3.91	3.91	4.9	_	-
S5551-21MW05	4940208 N 25583832 E	2.4	2.4	2.40	4.3	Metals, PHCs, PAHs, VOCs	S5551-21MW05-21GW-01
S5551-21MW06	4940262 N 25583891 E	TOC –Top of Casing (Artesian)	TOC (Artesian)	TOC (Artesian)	8.2	Metals, PHCs, PAHs, VOCs, PFAS	S5551-21MW06-21GW-01, S5551-21MW07-21GW-01 (DUP of S5551-21MW06-21GW-01)

Table 8-3: Monitoring Well Location and Groundwater Sampling Information

8.5 Quality Assurance / Quality Control (QA/QC)

QA/QC for the sampling program consisted of the collection of three trip blanks, collecting four field blanks, four equipment blanks and six duplicate samples. These were sent to AGAT Laboratory in Dartmouth, Nova Scotia for analytical testing.

QA/QC procedures followed protocols outlined in MARLANT SOP 2 (Decontamination of Equipment), 5 (Groundwater Purging and Sampling), 16 (PFAS Sampling Methodology & Best Practices).

To ensure accuracy and precision of samples collected, Quality Assurance was maintained by:

- > Use of MARLANT SOPs.
- > Use of Laboratory supplied sterile sample containers and Laboratory preservatives.
- > Decontamination of all sampling equipment between wells and other sample locations.
- > New pair of nitrile gloves during the collection of each sample.
- > Dedicated inline disposable filters for each sample that requires filtering.
- > Control of external contaminant sources when sampling such as; running motors, location of sampling equipment, wind direction, and container handling.

The Quality Control Protocol was evaluated the reproducibility, accuracy and level of contamination introduced by field procedures, including:

- > One (1) in ten (10) Field Duplicates collected for each round of sampling.
- > Four (4) Equipment Blank submitted during sampling events.
- > Four (4) Field Blank submitted daily during sampling events.
- > Three (3) Trip Blank submitted daily during sampling events.
- > Laboratory receiving samples followed their own internal QA/QC program and a copy of the results were included with each certificate of analysis.

QA/QC procedures for sample shipping are outlined below:

- > Collected samples and associated blanks are to be placed in coolers with ice and transported to the analytical laboratory as soon as possible after collection.
- > Fill out chain of custody (COC) and verify the sample matches the COC. Pack samples well enough to prevent breakage.
- > Place completed COC for all samples within the cooler in a zip lock bag and place in the cooler for transport to the laboratory.

8.6 Laboratory Analysis

At least two (2) representative soil samples were selected from each borehole and monitoring well for laboratory analysis. Each of the samples was submitted to AGAT Laboratory in Dartmouth, NS for quantification of selected Metals, PHC, PAH, VOC, PFAS and grain size.

Each of the parameters selected for analysis from each sample location are summarized in Table 8-2 above.

Groundwater samples recovered from S5551-21MW03, -21MW05 and -21MW06 were submitted for Metals, PHC, PAH, VOC, PFAS analyses. The samples were submitted to AGAT Laboratory in Dartmouth, NS. AGAT's laboratory is certified with the Canadian Association for Laboratory Accreditation (CALA).

Each of the parameters selected for analysis from each sample location are summarized in Table 8-3 above. The Laboratory Analytical Reports are provided in Appendix B.

9. Results

9.1 Geology / Stratigraphy

Soil conditions were observed to consist primarily of approximately 0.03 m to 0.15 m of root mat and humus topsoil, composed of organic rich silty sand and silt, with some sand over poorly sorted glacial till composed of sandy silt with some pebbles, cobbles, and boulders with varying proportions of clay extending to the maximum depth of investigation (approx. 9 mbgs). Sandy interlayers typically less than 0.01 m were observed in S5551-21BH02, -21BH03, -21MW03, and -21MW04. A thicker sandy interlayer up to 0.15 m thickness was observed in S5551-21MW05. Each of these features was logged in the field to occur between approximately 1.5 and 2 mbgs.

Auger refusal was encountered in S5551-21BH04, -21MW01, -21MW02, and -21MW06 at depths between approximately 2.9 and 9 mbgs. Given the possible thickness of glacial till, and cobbles within this area, it is unclear if bedrock was encountered while completing these test holes.

The subsurface soil stratigraphy encountered at each test hole location is summarized in detail on the borehole and monitoring well logs included in Appendix C.

9.2 Potentiometric Conditions

The results of groundwater level monitoring carried out on 13 April, 22 April, and 23 April 2021 are summarized in Table 8-3. Groundwater levels were measured on those dates ranging from 0.25 m below ground surface (mbgs) in S5551-21MW03 to 6.16 mbgs in S5551-21MW02. Groundwater was overflowing the top of casing in S5551-21MW06. Groundwater was not observed in S5551-21MW01 at the time of these site visits.

No light non aqueous phase liquid (LNAPL) was identified in any of the monitoring wells.

Given the absence of groundwater in S5551-21MW01 and the observed localized occurrence of thin coarser grained sandy interlayers in the glacial till between approximately 1.5 and 2 mbgs, it is apparent the presence of perched groundwater conditions exists within the near surface soil at the Site. As a result, the groundwater level measurements may not be considered representative of the presence of a true saturated groundwater horizon within near-surface overburden stratigraphy. If encountered during excavation activity, localized groundwater flow within this horizon could be expected to follow local topography.

The apparent presence of artesian conditions was identified in only one monitoring well (S5551-21MW06). Based upon the limited field observations, this phenomenon could be interpreted to represent the presence of groundwater over bedrock beneath the low permeability glacial till overburden. Groundwater flow may be expected to follow bedrock and topographic contours and at this lower elevation may be tidally influenced.

9.3 Field Observations

No measurable soil vapours were recorded in any of the soil samples recovered as part of this investigations. In addition, no visual or olfactory signs of potential contamination was observed.

9.4 Soil Laboratory Analytical Results

Soil samples were recovered from each of the recently completed boreholes and monitoring wells (S5551-21BH01 through -21BH06 and S5551-21MW01 through -21MW06) and submitted to the laboratory for selected Metals, PHC, PAH, VOC, PFAS and grain size analysis. The results of the laboratory analyses are summarized in Tables 1 to 5 (Appendix B). Copies of the laboratory certificates are included in Appendix F. Results from MARLANT SE Report 466 were compared with current guidelines and results are provided in Tables 6 and 7 (Appendix B).

The concentrations of PHCs, VOCs, PAHs and PFAS were reported by the laboratory to be below method detection limits for all parameters tested except for the PAH Perylene, for which a concentration of 0.05 mg/kg (equal to the RDL for Perylene) was measured in sample S5551-21MW03-21SS-06 and 0.06 mg/kg in sample S5551-21BH06-08. It should be noted that these results are far below the MARLANT SSC Guideline of 16,000 mg/kg.

The metals in soil results were below either the applicable Guideline or the method detection limit for most of the parameters tested. The only exceptions were Arsenic in soil sample S5551-21BH05-07 (14 milligrams per kilogram (mg/kg)) and S5551-21BH05-08 (14 mg/kg), sample S5551-21BH06-08 (14 mg/kg) and duplicate sample S5551-21BH06-09 (15 mg/kg) were reported by the laboratory to slightly exceed the applicable CCME guideline of 12 mg/kg, however they are below the MARLANT SSC guideline for arsenic of 36 mg/kg. S5551-21BH06-09 is a duplicate of sample S5551-21BH06-08. Iron was identified by the laboratory to exceed the applicable guideline in all samples except for S5551-21BH03-01.

These data are consistent with metals soil analytical results reported by Neill and Gunter in 2002. The analytical results from soil samples obtained from Hand Auger test holes reportedly recovered from within the former small arms range were reported to be either below the laboratory method detection limits or the applicable regulatory guidelines.

Soil grain size conditions were observed to consist of approximately 0.03 m to 0.15 m of root mat underlain by a humus topsoil, composed of organic rich silty sand and silt with some sand over poorly sorted glacial till composed of sandy silt with some pebbles, cobbles and boulders with varying proportions of clay extending to the maximum depth of investigation (approx. 9 mbgs).

9.5 Groundwater Laboratory Analytical Results

Groundwater samples were recovered from three of the completed monitoring wells (S5551-21MW03, - 21MW05 and -21MW06) and submitted to the laboratory for Dissolved Metals, PHC, PAH, VOC and PFAS analysis. S5551-21MW07-21GW-01 was a field duplicate of S5551-21MW06-21GW-01 and was submitted for complementary laboratory analysis. The results of the laboratory analyses are summarized in Tables 8 to 12 (Appendix B). Copies of the detailed laboratory analytical reports are included in Appendix F.

The PHC, VOC, PAH and PFAS results were reported by the laboratory to be below method detection limit for all the parameters tested. The metals results were below the applicable CCME Canadian Environmental Quality Guidelines (CEQGs) - Water Quality Guidelines for the Protection of Freshwater Aquatic Life (FWAL) (1999, updated 2015) and the method detection limit for most of the parameters tested. The only exceptions were Arsenic in groundwater recorded from S5551-21MW05-21GW-01 (14 μ g/L), S5551-21MW06-21GW-01 (46 μ g/L) and Iron in groundwater from S5551-21MW06-21GW-01 (671 μ g/L).

9.6 QA/QC

Ten percent of all the samples submitted to AGAT laboratory were blind duplicates for each parameter of each media tested. Laboratory QC standard samples were analyzed with the samples and their duplicates to assess the reliability of the analysis. The QC results are reported on the Certificates of Analysis included in Appendix F.

To reduce the risk of cross contamination during sampling and drilling, a field QA/QC program was followed which included the following measures:

- Disposable latex gloves were used to collect each sample and discarded following collection of each sample;
- > Sampling instruments and equipment were thoroughly cleaned prior to and between sampling locations;
- > Laboratory supplied jars and bottles were used to store water and soil samples; and
- > Samples were stored in a cooler with ice during storage and transported to the laboratory with the appropriate Chain of Custody documentation for tracking purposes.

AGAT Laboratory employs quality assurance professionals whose mandate is to monitor the operations for the company and to ensure compliance with the best documented practices. The Quality Assurance System covers all areas including sample collection, sample transportation, sample analysis and data reporting. Major components and features of the Quality Assurance System include:

- > Chain of Custody and sample integrity inspection;
- > Strict documentation control and files;
- > A detailed training program which trains personnel to prepare and analyze samples according to Standard Operating Procedures;
- All analytical methods are based on accepted (e.g., Ministry of Environment (MOE), United States Environmental Protection Agency (US EPA), American Society for Testing and Materials (ASTM)) procedures and are fully validated prior to use;
- > Precision is monitored by performing replicated analysis of samples within each batch;
- > Preventative maintenance procedures are clearly defined and written for each instrument and support equipment;
- > Maintenance activities are documented on standard forms within the equipment logbook;
- > Matrix effects in organic analysis are assessed with surrogate fortification of each sample;
- > All analytical procedures are subjected to various quality checks which include, linearity of calibration, accuracy of calibration, precision of analysis system and interference to the analysis systems;
- > Hard copy reports displaying all the required data are generated for each instrument;
- > A Continues Improvement System is in place, which includes third party audits, internal audits, investigation procedures, nonconformance reporting, document change request forms; improvement suggestions) and corrective and preventative actions; and
- > AGAT Analytical Laboratory is accredited for CALA.

9.6.1 Laboratory Surrogate Recoveries

All the surrogate recoveries for soil analytical results have been reviewed to evaluate the effectiveness and accuracy of the method on a sample-specific basis. A summary of the reported surrogate recovery data for each media and analytical suite is provided in Table 9-1 below.

Media	Parameter	Acceptable Recovery	Surrogate Recovery		
Soil	PHC	50%-140%	96%-106%		
	PAH	50%-140%	68%-92%		
	VOC	60%-140%	91%-98%		
	PFAS	30%-140%	31%-106%		

Table 9-1: Laboratory QC - Surrogate Recovery Summary

	PHC	70%-130%	85%-121%
Water	PAH	50%-140%	70%-94%
Waler	VOC	60%-140%	91%-100%
	PFAS	60%-140%	30% -140%

Soil

Assessment of the analysis of the laboratory blanks, replicates and the QC standards shows relatively good correlation. The surrogate recoveries for several PFAS compounds were reported to be below the minimum acceptable recovery limit of 30%, namely Perfluooctane Sulfonamide (PFOSA) from soil samples S5551-21MW02-21SS-08, S5551-21BH05-01 and S5551-21BH03-07, and Perfluorododecanoic Acid and Perfluorotetradecanoic Acid from sample S5551-21MW02-21SS-08. The laboratory reported that acceptable surrogate recoveries for more than 90% of the compounds were met, and the quality criteria for analysis were met.

QA violations for the PAH compound Bromomethane and the VOC compounds Trichlorofluoro-methane, Chloroform and 1,2-Dibromoethane were reported for sample S5551-21BH01-06. Similar violations for metals Barium and Boron were also reported for S5551-21BH01-01. The laboratory indicated that according to their method protocol, these represented less than 10% of the reported data for each analysis and are within acceptable limits.

It should be noted that some surrogate recoveries for samples S5551-21BH01-01, S5551-21BH01-08, S5551-21BH01-09, S5551-21BH04-01, S5551-21BH04-08, S5551-21MW06-21SS-01, S5551-21MW06-21SS-09, S5551-21MW06-21Grab-01, S5551-21MW02-21SS-01 and S5551-21MW02-21SS-08 were reported to be outside acceptance limits and the analytical results were corrected based on the surrogate percent recoveries. As a result, Surrogate recovery was low bias, therefore were biased high due to surrogate correction. Given that the analytical results for these samples were reported to be below the laboratory method detection limit, it is not considered significantly detrimental for the purpose of this study if the results are potentially biased high.

Groundwater

Assessment of the analysis of the laboratory blanks, replicates and the QC standards shows relatively good correlation. The surrogate recoveries for PFAS compounds Perfluoro dodecanoic Acid-13C7, Perfluoro dodecanoic Acid-13C2, and N-Ethylperfluorosulfonamideacetic from groundwater samples S5551-21MW06 was reported to be below the minimum acceptable recovery limit of 30%, the laboratory reported that acceptable surrogate recoveries for more than 90% of the compounds were met and the quality criteria for analysis was met. QA violations for the PAH compound Dibenzo (ah) anthracene, Quinoline, the VOC compounds Chloromethane, Bromomethane, cis-1,3-Dichloropropene and trans-1,3-Dichloropropene, and the PFAS compound N-Ethylperfluorosulfonamideacetic were reported for sample S5551-21MW03. The laboratory indicated that according to their method protocol, these represented less than 10% of the reported data for each analysis and are within acceptable limits.

It should be noted that some surrogate recoveries for groundwater samples S5551-21MW06-21GW-01 was reported to be outside acceptance limits and the analytical results were corrected based on the surrogate percent recoveries. As a result, Surrogate recovery was low bias, therefore were biased high due to surrogate correction. Given that the analytical results for these samples were reported to be below the laboratory method detection limit, it is not considered significantly detrimental for the purpose of this study if the results are potentially biased high.

9.6.2 Field QA Duplicates

All duplicates were chosen at random and represent ten percent of all samples collected to verify the accuracy of the analyses performed on the specific analytes. This is expressed as a relative percentage difference (RPD) between the two samples collected. It is noted that RPD criteria only apply when analytes are present at greater than 5 times the reporting limit. No deficiencies were noted. Duplicate results are provided in Appendix F – Laboratory Certificates. The results have not been repeatedly presented in Appendix B – Analytical Results.

10. Discussion and Findings

10.1 Contaminants of Potential Concern (COPCs), Contaminant Source and Location and Potential Receptors for the Site

The concentrations of PHCs, VOCs, PAHs and PFAS were reported by the laboratory to be below method detection limits for all parameters tested except for the PAH Perylene, for which a concentration of 0.05 mg/kg (equal to the RDL for Perylene) was measured in sample S5551-21MW03-21SS-06 and 0.06 mg/kg in sample S5551-21BH06-08. It should be noted that these results are far below the MARLANT SSC Guideline of 16,000 mg/kg.

The metals in soil results were below either the applicable Guideline or the method detection limit for most of the parameters tested. The only exceptions were Arsenic in soil sample S5551-21BH05-07 (14 mg/kg) and S5551-21BH05-08 (14 mg/kg), sample S5551-21BH06-08 (14 mg/kg) and duplicate sample S5551-21BH06-09 (15 mg/kg) which were reported by the laboratory to slightly exceed the applicable CCME guideline of 12 mg/kg, however analytical results are below the MARLANT SSC guideline for arsenic of 36 mg/kg. S5551-21BH06-09 is a duplicate of sample S5551-21BH06-08. Iron was identified by the laboratory to exceed the applicable guideline in all samples except for S5551-21BH03-01. These data are consistent with metals and PHC soil analytical results reported by Neill and Gunter (2002). The presence of elevated levels of arsenic and iron in soil and groundwater within this region is generally recognized (Dillon, 2011; NSE, 2015) and is often related to the presence of sulfide minerals frequently associated with bedrock and constituents within overburden originating from the Halifax Formation strata. Metal soil concentrations have been discussed further in Appendix D with reference to background levels.

All residual contamination in groundwater at the Site included arsenic and iron in groundwater. Groundwater is not used for potable or domestic use at the Site, and there are no domestic wells located either down or cross-gradient from the Site, as groundwater flows to the east towards Cow Bay, while the nearest water well is located 750 m north. Groundwater at the Site has been observed at average depths ranging from 0.25 to 6.16 mbgs across the entire property. The PHC, VOC, PAH and PFAS in groundwater results were reported by the laboratory to be below method detection limit for all the parameters tested. The metals in groundwater results were reported by the laboratory to be below the applicable Guideline, CCME Canadian Environmental Quality Guidelines (CEQGs) or Water Quality Guidelines for the Protection of Freshwater Aquatic Life (FWAL) (1999, updated 2015) or the method detection limit for most of the parameters tested. The only exceptions were Arsenic in groundwater recovered from S5551-21MW05-21GW-01 (14 μ g/L), S5551-21MW06-21GW-01 (46 μ g/L) and Iron in groundwater from S5551-21MW06-21GW-01 (671 μ g/L). Metal concentrations in groundwater have been discussed further in Appendix D with reference to background levels.

10.2 Observable Contaminant Trends

The investigation did not identify any contaminant trends that would require follow-up. The results were consistent with previous historic investigations, contaminants are primarily typical of background concentration for this region. The slight PAH exceedance would also be considered unremarkable given the location and proximity to historic marine related infrastructure.

10.3 Local Geological and Hydrogeological Conditions at the Site, Groundwater Flow Patterns, and Transport Mechanisms

The glacial till overburden at the Site is considered to exhibit low permeability, with thin sandy interlayers identified at a few test hole locations. Where possible, groundwater monitoring wells were preferentially constructed in locations at which sandy interlayers were identified and the potential to capture groundwater was most likely. Based upon the data recovered as part of this study, there appears to be localized perched groundwater at the Site observed at horizontal depths between approximately 1.5 and 2 mbgs. It should be noted that given their apparent irregular and discontinuous presence, they may be found to occur at other depths and locations.

Artesian groundwater conditions were identified in S5551-21MW06 located near the shoreline on the eastern side of the Site. The monitoring well was completed at approximately 8 mbgs and could not be advanced further due to auger refusal. Although no sandy seams were observed while drilling, it may be likely that groundwater elevations over bedrock are confined by the low permeability glacial till. The area exhibits typical, near shore, groundwater discharge.

10.4 Discuss any Potential Risk to the Environment or Human Health, and Requirements for Further Investigation or Delineation

The identified presence of localized groundwater within the upper 2 m of the soil profile, and assuming a maximum depth of soil disturbance for the LBTF of 5 mbgs, it is likely that groundwater management will be required during proposed construction activities, however groundwater quality is not considered a risk to human health or the environment as it currently interacts with the ecology through this Region.

10.5 Soil and Groundwater Management Requirements (related to the Planned Design Activities and Future Construction and Operation of a LBTF)

Soil

Arsenic and Iron concentrations in soils exceed one or both reference guidelines, CCME CSQG's and the Province of Nova Scotia Tier 1 remediation guidelines. In both cases the guidelines incorporate both human health and ecological considerations. As such, and in accordance with the Contaminated Sites Instruction (CSI.004.001) for Soil Management, the disturbance removal and /or re-use of these soils must be undertaken in accordance with a prescribed Management Plan. This plan will apply site-specific standards and requirements based on the proposed re-use and potential risks. Based on the concentrations, extensive on-site re-use of these soils will be possible with the application of prescribed procedures and controls based on the application; examples of required procedures would include dust controls, appropriate Personal Protective Equipment, and engineering mitigations such as use of soils beneath asphalt, gravel, or suitable landscaping geotextiles. Given the finer grain sizes in soil, minimizing dust generation will be an important consideration in any Soil Management Plan.

The physical characteristics of the soil would not generally restrict on-site re-use. Grain size, drainage and erosion characteristics would need to be evaluated, and matched to the proposed re-use options (i.e., backfill, cover material, landscaping features etc.).

Groundwater

Arsenic and Iron in groundwater concentration exceeded the. CCME Canadian Environmental Quality Guidelines (CEQGs) - Water Quality Guidelines for the Protection of Freshwater Aquatic Life (FWAL) (1999, updated 2015). It is understood the proposed LBTF will be connected to municipal services. Non-potable assessment criteria would be relevant. Observations (adjacent wetlands, and coastal slopes and elevations) support a conclusion the site is a groundwater discharge zone. The groundwater is currently

interacting with surficial ecology and therefore any proposed de-watering would not likely present a change in existing conditions. Based on the metal concentrations in groundwater in relation to regional background concentrations, worker interactions with groundwaters would not be restricted (see Appendix D). The borehole investigations noted some siltation in the water columns suggesting construction activities involving de-watering may require siltation controls (e.g., sedimentation pond or equivalent).

10.6 Other Considerations Related to the Handling and Onsite and/or Offsite Disposal of the Site's Soil/Groundwater During Construction Activities

On-site use of soils will be possible following the provisions of a Soil Management Plan. Off-site use of soils would require provincial notification and application of the Nova Scotia Contaminated Site Regulations.

On-site use of groundwater would not be restricted (non-potable applications). Localized de-watering to receiving environmental would not be restricted. Groundwater was identified in several wells within the upper 2 m of the soil profile, assuming a maximum depth of soil disturbance for the proposed LBTF of 5 mbgs, it is likely that groundwater management will be a requirement during proposed construction activities. Artesian conditions were encountered in one monitoring well located near the shore. Further investigation would be required assess perched and artesian groundwater at the Site as these conditions may influence geotechnical design parameters.

10.7 Site/Land Use Restrictions to Support Planning Decisions in Relation to the Proposed Change in Land Use and Construction of the LBTF

The exact location of the former Emergency Explosives Demolition (EOD) area and small arms ranges remains undefined, as a result, the presence of potential related contaminants in soil or groundwater or other EOD related safety concerns will need to be highlighted in construction related planning information and Specifications.

The site is located at the end of a public road with residential development terminating at a public golf course and federal lands. Seasonal and construction period traffic planning should be considered. Seasonal load restrictions on this road classification would also be applicable.

The Final Concept Report – Irving Shipbuilding Inc. – Land Based Test Facility Report noted several potential land/use restrictions related to plant Species of Conservation Concern. This report (Stantec, June 3, 2020) is noted in the Reference Section 11.

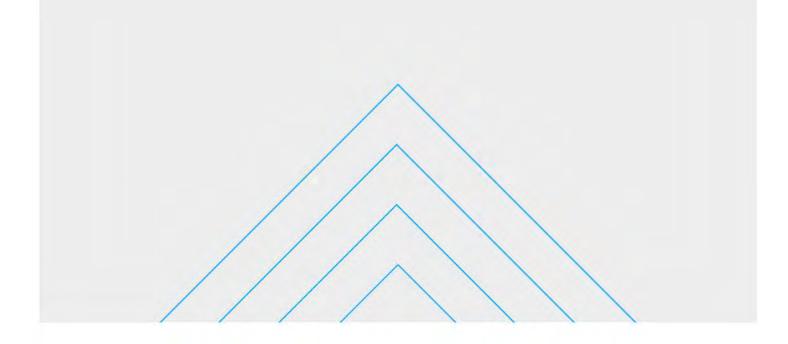
10.8 Further Assessment

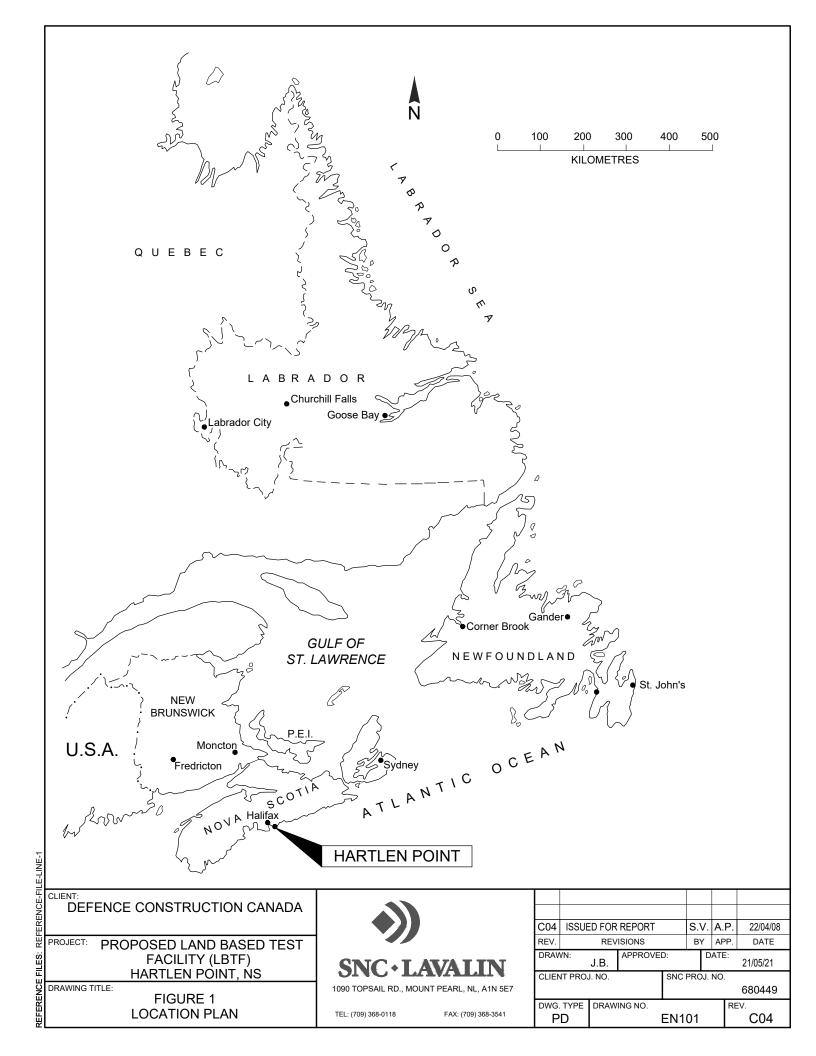
Soil and groundwater contaminants have been identified and delineated. Artesian groundwater flow conditions were encountered in one monitoring well. These conditions may influence geotechnical and hydrogeologic design parameters, depending upon the proposed design. Artesian conditions may also affect construction methodology related to de-watering and drainage. The nature and scope of additional investigations would be influenced by the facility design requirements.

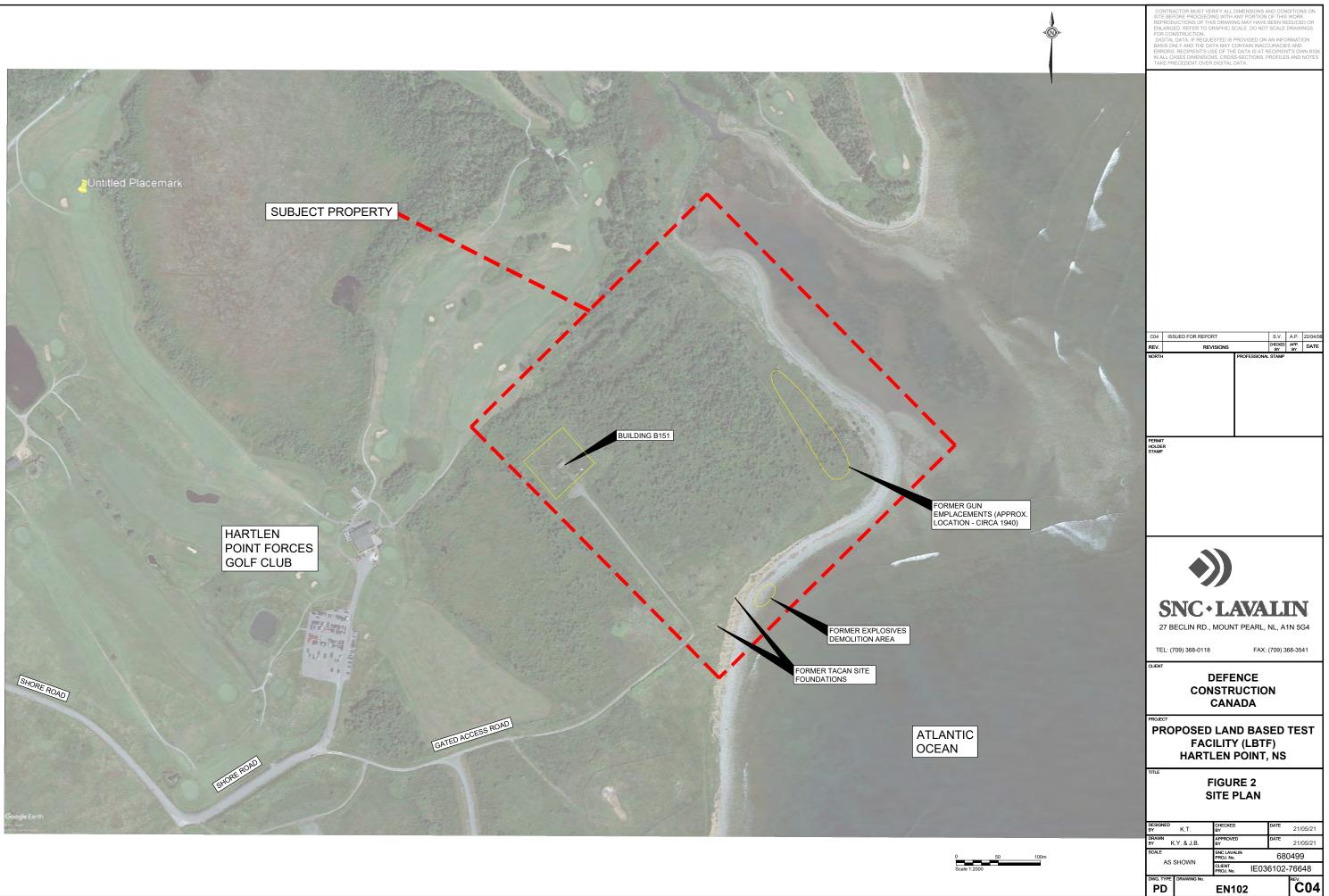
11. References

Table 11-1: References

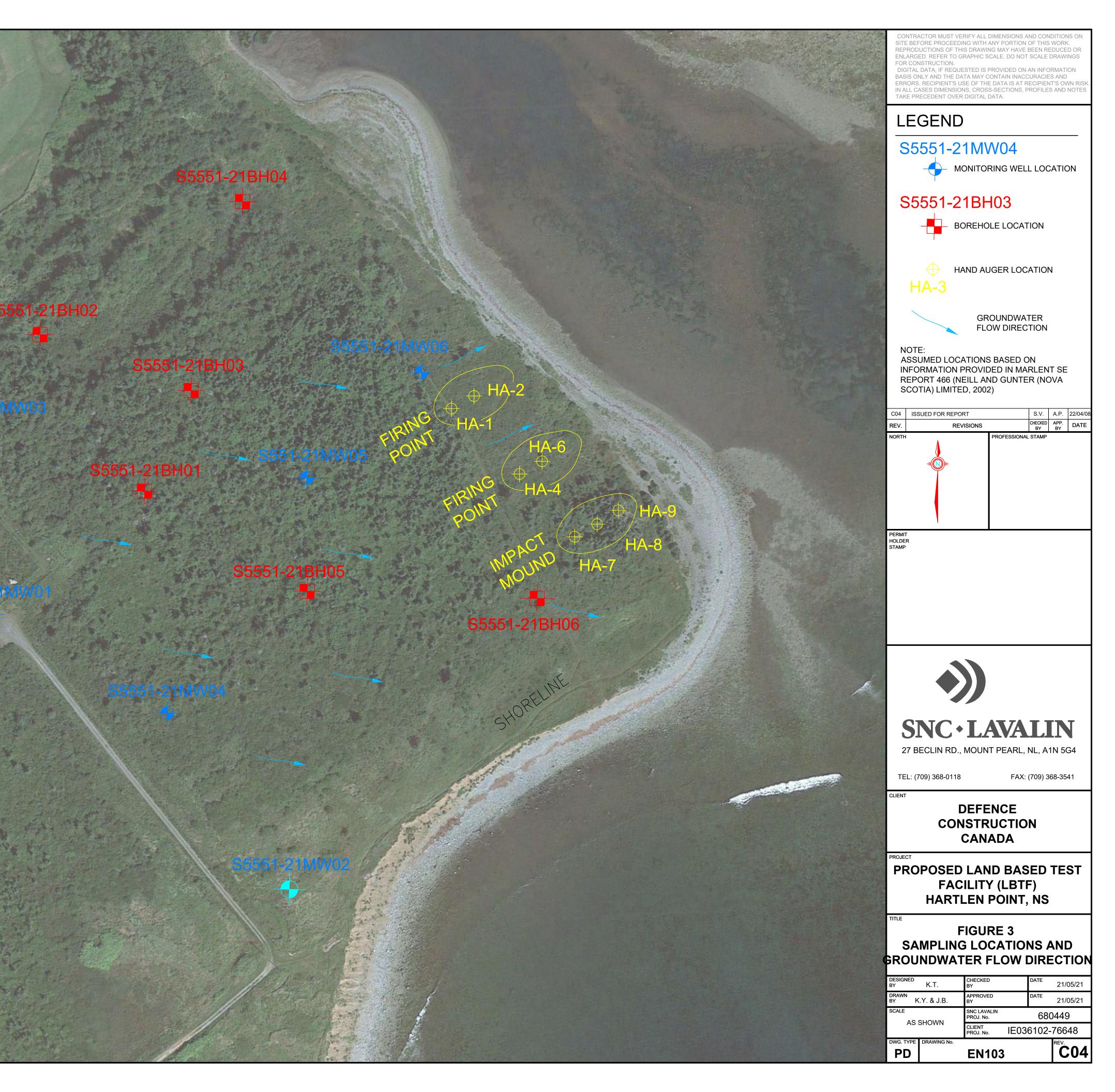
Ref. No.	Date	Source	Item #						
1	1999 as updated	Canadian Council of Ministers of the Environment	Canadian Council of Ministers of the Environment (CCME), Canadian Soil Quality Guidelines (CSQG) Soil Quality Guidelines for the Protection of Environmental and Human Health, Commercial, Fine Grained, and non-potable water guidelines.						
2	Revised 2008	Canadian Council of Ministers of the Environment	CCME Canada Wide Standards for Petroleum Hydrocarbons in Soil - Tier 1 Levels for Surface Soil (Commercial, fine-grained soil criteria).						
3	2012 (revised January 2015)	Atlantic Risk Based Corrective Action – Version 3	Atlantic Risk Based Corrective Action for Petroleum Impacted Sites in Atlantic Canada - Table 4a: Tier 1 Risk Based Screening Levels for Soil (Commercial, fine-grained, and Non-potable water criteria)						
4	2012 (revised January 2015)	Atlantic Risk Based Corrective Action – Version 3	Atlantic Risk Based Corrective Action for Petroleum Impacted Sites in Atlantic Canada - Commercial Table 1a: Tier 1 Soil Ecological Screening Levels for the Protection of Plants and Soil Invertebrates; Direct Soil Contact						
5	2019	Health Canada	Health Canada Draft Guidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS), Soil Screening Values (SSV), commercial land use.						
6	1999 (revised in 2015)	Canadian Council of Ministers of the Environment	Canadian Environmental Quality Guidelines (CEQGs) - Water Quality Guidelines for the Protection of Freshwater Aquatic Life (FWAL) (1999, updated 2015)						
7	November 2012	Government of Canada	Federal Contaminated Sites Action Plan (FCSAP), Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGQG) for Federal Contaminated Sites, c9ommercial land use, fine grain soil						
8	2012 (revised January 2015)	Atlantic Risk Based Corrective Action – Version 3	Atlantic RBCA Tier I Risk Based Screening Levels for Groundwater.						
9	April 2019	Health Canada	Health Canada Drinking Water Screening Values for other PFAS.						
10	April 2019	Health Canada	Health Canada Guideline for Canadian drinking water quality - maximum acceptable concentrations (MACs) for PFOS and PFOA.						
11	April 6, 2021	AGAT Laboratory	Certificate of Analysis – AGAT Work Order Number 21X723447						
12	April 8, 2021	AGAT Laboratory	Certificate of Analysis – AGAT Work Order Number 21X723545						


Ref. No.	Date	Source	Item #
13	April 30, 2021	AGAT Laboratory	Certificate of Analysis – AGAT Work Order Number 21X725158
14	May 13, 2021	AGAT Laboratory	Certificate of Analysis – AGAT Work Order Number 21X737616
15	May 2018	MARLANT Safety and Environment	MARLANT Standard Operating Procedure No. 2 Decontamination of Equipment
16	May 2018	MARLANT Safety and Environment	MARLANT Standard Operating Procedure No. 5 Groundwater Purging and Sampling.
17	May 2018	MARLANT Safety and Environment	MARLANT Standard Operating Procedure No. 8 Surface Soil Sampling.
18	May 2018	MARLANT Safety and Environment	MARLANT Standard Operating Procedure No. 10 Soil Jar Vapour Headspace Screening.
19	May 2018	MARLANT Safety and Environment	MARLANT Standard Operating Procedure No. 12 Chain of Custody.
20	May 2018	MARLANT Safety and Environment	MARLANT Standard Operating Procedure No. 13 Data Transfer and Recording.
21	May 2018	MARLANT Safety and Environment	MARLANT Standard Operating Procedure No. 15 – Monitoring Well Development.
22	May 2018	MARLANT Safety and Environment	MARLANT Standard Operating Procedure No. 16 – PFAS Sampling Methodology and Best Practices.
23	June 1996	MGI Limited	Historical Environmental Review, 12 Wing Shearwater, Nova Scotia
24	April 1997	MGI Limited	Environmental Investigation, Former DND Coastal Defence Installation, Hartlen Point, NS, Project SW069864.
25	March 8, 2002	Neill and Gunter (Nova Scotia) Limited	FS/PQRA At 4 Sites Former DND Coastal Installation at Hartlen Point, Dartmouth, Nova Scotia, NGNS Job No. 16844, Rev. 1.
26	March 2011	Dillon Consulting Limited (Dillon)	Review of Environment Canada's Background Soil Database (2004-2009) Version No.1, Prepared for Public Works and Government Services Canada
27	August 2015	Nova Scotia Environment (NSE)	Nova Scotia Groundwater Observation Well Network
28	March, 2018	WSP	Natural Resource Management Plan, Hartlen Point, Maritime Forces Atlantic (MARLANT)
29	2020	OCL	Additional Site Investigations at 4 Sites: Hartlen Point and Osborne Head, CFB Halifax, Nova Scotia, Project No. HX00022
30	June 3, 2020	Stantec	Final Concept Report, Irving Shipbuilding Inc. – Land Based Test Capability.
31	July 9, 2020	Stantec	Geotechnical Letter Report – Proposed Development, Hartlen Point, Shearwater, Nova Scotia
32	2020	Unauthored	Summary of Environmental Considerations, Proposed Canadian Surface Combatant Land Based Test Facility, Hartlen Point, Eastern Passage, Nova

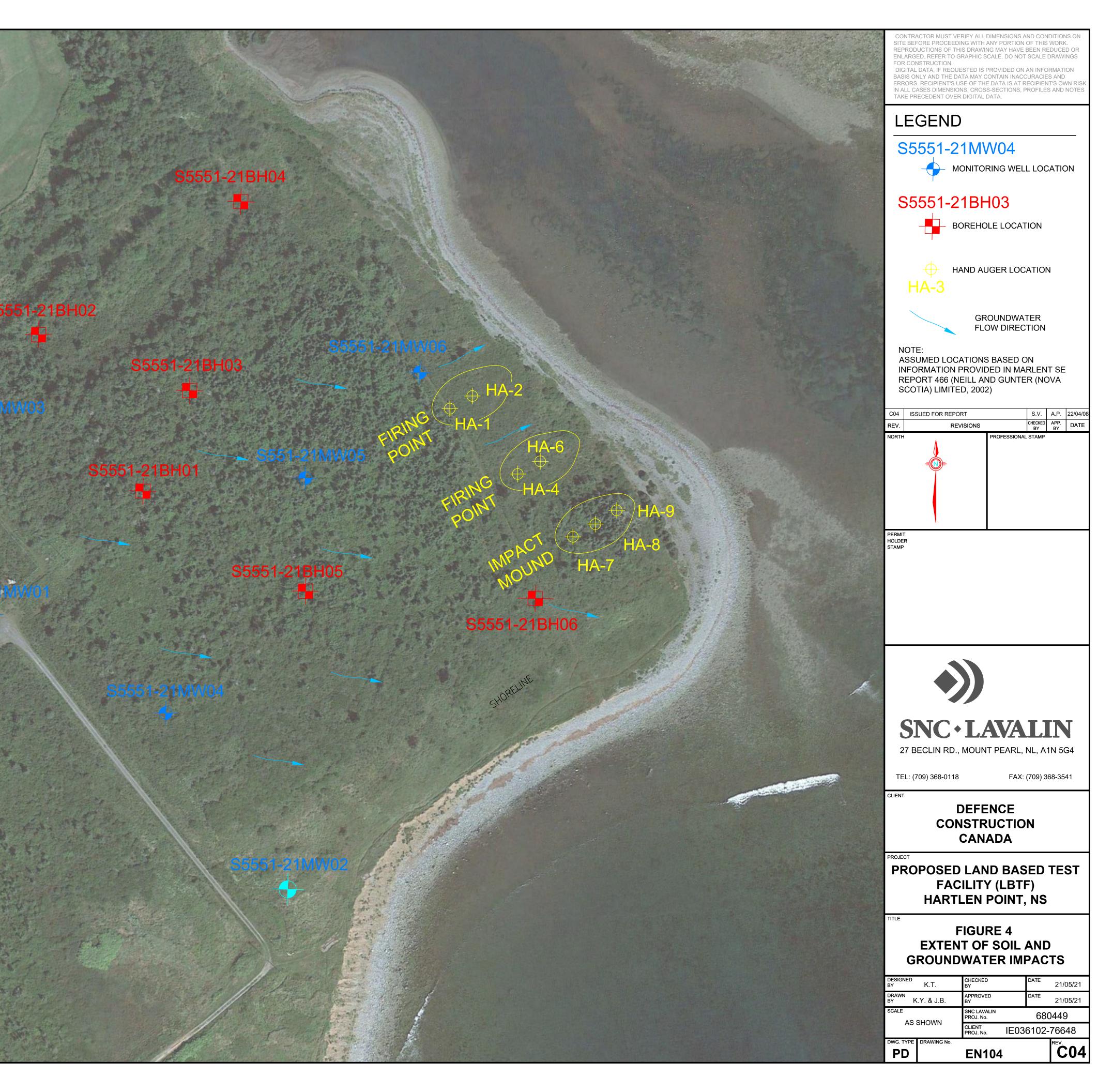



Ref. No.	Date	Source	Item #
			Scotia
29	July 9, 2020	Stantec	Geotechnical Letter Report – Proposed Development, Hartlen Point, Shearwater, Nova Scotia
30	2020	Unauthored	Summary of Environmental Considerations, Proposed Canadian Surface Combatant Land Based Test Facility, Hartlen Point, Eastern Passage, Nova Scotia

Appendix A

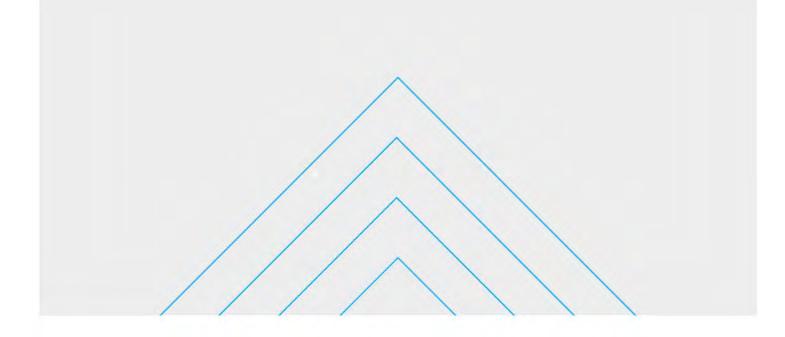

Figures

		and the second	
	NAD83 Latitude /	Longitude (de	cimal degrees)
	S5551-21BH01	44.59695° N	63.44509° W
	S5551-21BH02	44.59767° N	63.44575° W
	S5551-21BH03	44.59741° N	63.44478° W
- All	S5551-21BH04	44.59828° N	63.44444° W
	S5551-21BH05	44.59648° N	63.44405° W
	S5551-21BH06	44.59643° N	63.44257° W
	S5551-21MW01	44.59639° N	63.44608° W
	S5551-21MW02	44.59511° N	63.44419° W
	S5551-21MW03	44.59611° N	63.44575° W
	S5551-21MW04	44.59592° N	63.44496° W
	S5551-21MW05	44.59700° N	63.44404° W
	S5551-21MW06	44.59748° N	63.44330° W



	GROUNDWATER									
	EXCEEDANCES									
12	LOCATION	ARSENIC	IRON							
105	LUCATION	(µg/L)	(µg/L)							
	S5551-21MW05	14	< Guideline							
	S5551-21MW06	46	671							
	S5551-21MW07 (dup of 21MW06)	47	642							

SOIL EXCEEDANCES


LOCATION	ARSENIC (mg/kg)
S5551-21BH05-07	14
S5551-21BH05-08	14
S5551-21BH06-08	14
S5551-21BH06-09	15
the summer of th	

ERENCE FILES

Appendix B

Analytical Results

	San	Sample Location		Provincial Standards	Site Specific		S5551-21BH01		S5551-	-21BH02	S5551	-21BH03
-		Sample II	CCME CEQG SQG	NS Tier I EQS ²	MARLANT SSC2 ³	S5551-21BH01-01	S5551-21BH01-09	S5551-21BH01-08	S5551-21BH02-01	S5551-21BH02-08	S5551-21BH03-01	S5551-21BH03-07
	Sample Date	yyyy mm dd) (CL FG) ¹			03/22/2021	Duplicate	03/22/2021	03/17/2021	03/17/2021	03/16/2021	03/16/2021
	Dept	n Interval (m)			0.0 - 0.6	0.0 - 0.6	4.3 - 4.9	0.0 - 0.6	4.3 - 4.9	0.0 - 0.6	3.7 - 4.3
Parameter	Uni	RDL						Analytical Results			Analytic	al Results
Aluminum	mg/k	g 10	n/a	15,400	n/a	10,800	10,900	14,700	14,500	14,100	6,300	14,900
Antimony	mg/k	g 1	40	7.5	420	<1	<1	<1	<1	<1	<1	<1
Arsenic	mg/k	g 1	12	31	36	8	8	10	10	8	5	8
Barium	mg/k	g 5	2,000	10,000	n/a	12	13	77	50	75	11	76
Beryllium	mg/k	g 2	8	110	n/a	<2	<2	<2	<2	<2	<2	<2
Boron	mg/k	g 2	n/a	4300	n/a	<2	<2	5	5	7	<2	7
Cadmium	mg/k	g 0.3	22	49	5,400	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/k	g 2	87	630	5,900	14	15	22	21	22	8	20
Cobalt	mg/k	g 1	300	22	n/a	5	5	12	12	12	4	12
Copper	mg/k	g 2	91	4000	620,000	6	6	19	22	20	4	19
Iron	mg/k	g 50	n/a	11,000	n/a	23,100	23,100	23,100	23,100	23,100	10,600	23,100
Lead	mg/k	g 0.5	260	260	8,700	8.8	8.0	9.0	7.6	7.9	5.1	7.2
Lithium	mg/k	g 5	n/a	n/a	n/a	15	19	30	30	37	13	36
Manganese	mg/k	g 2	n/a	360	n/a	188	176	711	555	707	183	620
Molybdenum	mg/k	g 2	40	110	37,000	<2	<2	<2	<2	<2	<2	<2
Nickel	mg/k	g 2	89	310	32,000	10	12	28	23	26	7	28
Selenium	mg/k	g 1	2.9	125	n/a	<1	<1	<1	<1	<1	<1	<1
Silver	mg/k	g 0.5	40	77	n/a	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	mg/k	g 5	n/a	9,400	n/a	<5	<5	20	8	24	<5	23
Thallium	mg/k	g 0.1	1	1	100	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	mg/k	g 2	300	9,400	420,000	3	3	3	2	3	<2	3
Uranium	mg/k	g 0.1	33	33	n/a	0.3	0.3	0.4	0.5	0.5	0.3	0.5
Vanadium	mg/k	g 2	130	39	59000	28.0	24.0	24.0	24.0	23.0	16	23.0
Zinc	mg/k	g 5	410	16,000	>999999	24	26	60	54	58	18	66

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the sample

< Denotes concentration less than indicated detection limit.

n/a Denotes no applicable standard/guideline.

RDL - Reported Detection Limit

>999,999 indicates that the calculated SSC was greater than 1,000,000 ppm, indicating that adverse health effects are not anticipated due to chronic exposure to soil under the defined exposure scenarios

UNDERLINE Concentration greater than CCME CEQG SQG CL FG Guidelines SHADED Concentration greater than the Nova Scotia (NS) Tier I EQS RED

Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health, Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated) ² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

	Sample	Location	Federal Guidelines	Provincial Standards	Site Specific		S5551-2	21BH04			S5551-21BH05	
	5	Sample ID	CCME CEQG SQG	NS Tier I EQS ²	MARLANT SSC2 ³	S5551-21BH04-01	S5551-21BH04-09	S5551-21BH04-05	S5551-21BH04-08	S5551-21BH05-01	S5551-21BH05-07	S5551-21BH05-08
Sar	mple Date (yyy	y mm dd)	(CL FG) ¹			03/22/2021	Duplicate	03/22/2021	Duplicate	03/16/2021	03/16/2021	03/16/2021
	Depth Interval (m					0.0 - 0.6	0.0 - 0.6	2.4 - 3.1	2.4 - 3.1	0.0 - 0.6	3.7 - 4.3	4.3 - 4.9
Parameter	Unit	RDL									Analytical Results	
Aluminum	mg/kg	10	n/a	15,400	n/a	14,500	13,700	13,600	14,900	14,000	14,900	12,900
Antimony	mg/kg	1	40	7.5	420	<1	<1	<1	<1	<1	<1	<1
Arsenic	mg/kg	1	12	31	36	9	7	9	9	10	14	14
Barium	mg/kg	5	2,000	10,000	n/a	25	23	80	66	18	92	80
Beryllium	mg/kg	2	8	110	n/a	<2	<2	<2	<2	<2	<2	<2
Boron	mg/kg	2	n/a	4300	n/a	3	2	6	7	3	4	4
Cadmium	mg/kg	0.3	22	49	5,400	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/kg	2	87	630	5,900	19	19	20	22	19	18	18
Cobalt	mg/kg	1	300	22	n/a	12	12	12	12	7	11	10
Copper	mg/kg	2	91	4000	620,000	17	15	19	26	8	18	17
Iron	mg/kg	50	n/a	11,000	n/a	22,900	21,800	21,200	24,300	23,100	23,100	23,100
Lead	mg/kg	0.5	260	260	8,700	8.2	7.9	7.4	186	8.9	7.7	7.2
Lithium	mg/kg	5	n/a	n/a	n/a	26	25	32	31	31	36	32
Manganese	mg/kg	2	n/a	360	n/a	599	594	644	714	243	615	522
Molybdenum	mg/kg	2	40	110	37,000	<2	<2	<2	<2	<2	<2	<2
Nickel	mg/kg	2	89	310	32,000	21	20	27	28	16	22	20
Selenium	mg/kg	1	2.9	125	n/a	<1	<1	<1	<1	<1	<1	<1
Silver	mg/kg	0.5	40	77	n/a	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	mg/kg	5	n/a	9,400	n/a	5	5	20	22	<5	16	15
Thallium	mg/kg	0.1	1	1	100	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	mg/kg	2	300	9,400	420,000	3	3	3	3	3	3	3
Uranium	mg/kg	0.1	33	33	n/a	0.4	0.4	0.4	0.4	0.4	1.2	0.8
Vanadium	mg/kg	2	130	39	59000	21.0	20.0	22.0	24.0	26.0	19.0	19.0
Zinc	mg/kg	5	410	16,000	>999999	49	45	61	58	41	53	50

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the sample

< Denotes concentration less than indicated detection limit.

n/a Denotes no applicable standard/guideline.

RDL - Reported Detection Limit

>999,999 indicates that the calculated SSC was greater than 1,000,000 ppm, indicating that adverse health effects are not anticipated due to chronic exposure to soil under the defined exposure scenarios

UNDERLINE Concentration greater than CCME CEQG SQG CL FG Guidelines SHADED Concentration greater than the Nova Scotia (NS) Tier I EQS RED

Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health, Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated) ² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

	Sample Location F		Federal Guidelines	Provincial Standards	Site Specific		S5551-21BH06		S5551	-21MW01	S5551-	21MW02
	S	ample ID	CCME CEQG SQG	NS Tier I EQS ²	MARLANT SSC2 ³	S5551-21BH06-01	S5551-21BH06-08	S5551-21BH06-09	S5551-21MW01-21SS-01	S5551-21MW01-21SS-08	S5551-21MW02-21SS-01	S5551-21MW02-21SS-08
	Sample Date (yyy	y mm dd)) (CL FG) ¹			03/18/2021	03/17/2021	Duplicate	03/17/2021	03/17/2021	03/22/2021	03/22/2021
	Depth Interval (I					0.0 - 0.6	4.3 - 4.9	4.3 - 4.9	0.0 - 0.6	4.3 - 4.9	0.0 - 0.6	4.3 - 4.9
Parameter	Unit	RDL								Analytical	Results	
Aluminum	mg/kg	10	n/a	15,400	n/a	10,800	11,700	13,600	12,700	13,900	9,990	14,300
Antimony	mg/kg	1	40	7.5	420	<1	<1	<1	<1	<1	<1	<1
Arsenic	mg/kg	1	12	31	36	7	14	15	6	7	8	7
Barium	mg/kg	5	2,000	10,000	n/a	50	65	74	20	80	24	71
Beryllium	mg/kg	2	8	110	n/a	<2	<2	<2	<2	<2	<2	<2
Boron	mg/kg	2	n/a	4300	n/a	4	4	4	3	7	3	5
Cadmium	mg/kg	0.3	22	49	5,400	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/kg	2	87	630	5,900	16	20	25	16	19	16	22
Cobalt	mg/kg	1	300	22	n/a	7	11	11	6	12	5	15
Copper	mg/kg	2	91	4000	620,000	13	15	18	11	17	9	20
Iron	mg/kg	50	n/a	11,000	n/a	23,100	23,100	23,100	17,500	21,900	15,300	23,500
Lead	mg/kg	0.5	260	260	8,700	5.3	8.4	9.6	6.2	7.5	11.0	6.9
Lithium	mg/kg	5	n/a	n/a	n/a	25	30	35	27	33	16	31
Manganese	mg/kg	2	n/a	360	n/a	410	524	573	240	611	215	630
Molybdenum	mg/kg	2	40	110	37,000	<2	<2	<2	<2	<2	<2	<2
Nickel	mg/kg	2	89	310	32,000	19	19	22	13	24	13	31
Selenium	mg/kg	1	2.9	125	n/a	<1	<1	<1	<1	<1	<1	<1
Silver	mg/kg	0.5	40	77	n/a	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	mg/kg	5	n/a	9,400	n/a	15	13	17	<5	22	14	21
Thallium	mg/kg	0.1	1	1	100	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	mg/kg	2	300	9,400	420,000	3	3	3	3	3	3	3
Uranium	mg/kg	0.1	33	33	n/a	0.5	0.6	0.7	0.4	0.4	0.4	0.6
Vanadium	mg/kg	2	130	39	59000	18.0	16.0	20.0	18	21.0	19.0	24.0
Zinc	mg/kg	5	410	16,000	>999999	39	45	51	33	55	31	66

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the sample

< Denotes concentration less than indicated detection limit.

n/a Denotes no applicable standard/guideline.

RDL - Reported Detection Limit

>999,999 indicates that the calculated SSC was greater than 1,000,000 ppm, indicating that adverse health effects are not anticipated due to chronic exposure to soil under the defined exposure scenarios

UNDERLINE Concentration greater than CCME CEQG SQG CL FG Guidelines SHADED Concentration greater than the Nova Scotia (NS) Tier I EQS RED

Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health, Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated) ² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

	Sample	Location	Federal Guidelines	Provincial Standards	Site Specific	S5551-2	21MW03	S5551-2	21MW05	S5551-21MW04	
	S	Sample ID	CCME CEQG SQG	NS Tier I EQS ²	MARLANT SSC2 ³	S5551-21MW03-21SS-01	S5551-21MW03-21SS-06	S5551-21MW05-21SS-01	S5551-21MW05-21SS-07	S5551-21MW04-21SS-01	S5551-21MW04-21SS-08
	Sample Date (yyyy mm dd		(CL FG) ¹			03/15/2021	03/15/2021	03/15/2021	03/15/2021	03/17/2021	03/17/2021
	Depth Interval (m					0.0 - 0.6	3.1 - 3.7	0.0 - 0.6	3.7 - 4.3	0.0 - 0.6	4.3 - 4.9
Parameter	Unit	RDL					Analytica	Analytica	Analytical Results		
Aluminum	mg/kg	10	n/a	15,400	n/a	10,700	14,800	11,500	12,700	12,600	15,300
Antimony	mg/kg	1	40	7.5	420	<1	<1	<1	<1	<1	<1
Arsenic	mg/kg	1	12	31	36	8	7	8	7	9	9
Barium	mg/kg	5	2,000	10,000	n/a	11	70	11	71	23	79
Beryllium	mg/kg	2	8	110	n/a	<2	<2	<2	<2	<2	<2
Boron	mg/kg	2	n/a	4300	n/a	4	7	3	6	3	7
Cadmium	mg/kg	0.3	22	49	5,400	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/kg	2	87	630	5,900	12	20	14	19	15	26
Cobalt	mg/kg	1	300	22	n/a	4	12	5	11	12	12
Copper	mg/kg	2	91	4000	620,000	6	18	5	18	14	42
Iron	mg/kg	50	n/a	11,000	n/a	20,600	23,300	22,900	20,700	19,600	25,300
Lead	mg/kg	0.5	260	260	8,700	8.6	14.7	6.1	6.4	8.9	7.4
Lithium	mg/kg	5	n/a	n/a	n/a	19	36	24	31	24	37
Manganese	mg/kg	2	n/a	360	n/a	150	657	210	627	668	760
Molybdenum	mg/kg	2	40	110	37,000	<2	<2	<2	<2	<2	<2
Nickel	mg/kg	2	89	310	32,000	10	24	19	23	15	35
Selenium	mg/kg	1	2.9	125	n/a	<1	<1	<1	<1	<1	<1
Silver	mg/kg	0.5	40	77	n/a	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	mg/kg	5	n/a	9,400	n/a	<5	21	<5	20	<5	20
Thallium	mg/kg	0.1	1	1	100	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	mg/kg	2	300	9,400	420,000	2	4	3	3	2	3
Uranium	mg/kg	0.1	33	33	n/a	0.3	0.4	0.3	0.4	0.3	0.4
Vanadium	mg/kg	2	130	39	59000	29.0	21.0	24.0	20.0	17	23
Zinc	mg/kg	5	410	16,000	>999999	23	57	28	55	35	60

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the sample

< Denotes concentration less than indicated detection limit.

n/a Denotes no applicable standard/guideline.

RDL - Reported Detection Limit

>999,999 indicates that the calculated SSC was greater than 1,000,000 ppm, indicating that adverse health effects are not anticipated due to chronic exposure to soil under the defined exposure scenarios

UNDERLINE Concentration greater than CCME CEQG SQG CL FG Guidelines SHADED Concentration greater than the Nova Scotia (NS) Tier I EQS RED

Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health, Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated) ² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

	Sample	Location	Federal Guidelines	Provincial Standards	Site Specific		S5551-21MW06	
		Sample ID	CCME CEQG SQG	NS Tier I EQS ²	MARLANT SSC2 ³	S5551-21MW06-21SS-01	S5551-21MW06-21SS-09	S5551-21MW06-21SS-08
Sampl	e Date (yyy	y mm dd)	(CL FG) ¹			03/22/2021	Duplicate	03/22/2021
	Depth In	terval (m)				0.0 - 0.6	0.0 - 0.6	4.3 - 4.9
Parameter	Unit	RDL						
Aluminum	mg/kg	10	n/a	15,400	n/a	13,400	12,400	14,900
Antimony	mg/kg	1	40	7.5	420	<1	<1	<1
Arsenic	mg/kg	1	12	31	36	8	9	9
Barium	mg/kg	5	2,000	10,000	n/a	19	18	73
Beryllium	mg/kg	2	8	110	n/a	<2	<2	<2
Boron	mg/kg	2	n/a	4300	n/a	3	3	6
Cadmium	mg/kg	0.3	22	49	5,400	<0.3	<0.3	<0.3
Chromium	mg/kg	2	87	630	5,900	19	18	57
Cobalt	mg/kg	1	300	22	n/a	5	5	13
Copper	mg/kg	2	91	4000	620,000	7	7	24
Iron	mg/kg	50	n/a	11,000	n/a	27,800	23,600	23,600
Lead	mg/kg	0.5	260	260	8,700	7.3	7.7	7.3
Lithium	mg/kg	5	n/a	n/a	n/a	22	19	32
Manganese	mg/kg	2	n/a	360	n/a	168	170	674
Molybdenum	mg/kg	2	40	110	37,000	<2	<2	6
Nickel	mg/kg	2	89	310	32,000	15	13	38
Selenium	mg/kg	1	2.9	125	n/a	<1	<1	<1
Silver	mg/kg	0.5	40	77	n/a	<0.5	<0.5	<0.5
Strontium	mg/kg	5	n/a	9,400	n/a	<5	<5	26
Thallium	mg/kg	0.1	1	1	100	<0.1	<0.1	<0.1
Tin	mg/kg	2	300	9,400	420,000	3	3	3
Uranium	mg/kg	0.1	33	33	n/a	0.3	0.3	0.5
Vanadium	mg/kg	2	130	39	59000	29	28	23
Zinc	mg/kg	5	410	16,000	>999999	32	29	62

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the sample

< Denotes concentration less than indicated detection limit.

n/a Denotes no applicable standard/guideline.

RDL - Reported Detection Limit

>999,999 indicates that the calculated SSC was greater than 1,000,000 ppm, indicating that adverse health effects are not anticipated due to chronic exposure to soil under the defined exposure scenarios

Concentration greater than CCME CEQG SQG CL FG Guidelines UNDERLINE SHADED Concentration greater than the Nova Scotia (NS) Tier I EQS RED

Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health, Commercial Land Use (CL), Fine-Grained (FG) Surface S ² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

Table 2: Petroleum Hydrocarbons in Soil

	Sam	ple Location	Federal Guidelines	Provincial	Standards	S5551-21BH01	S5551-21BH02	S5551-21BH03	S5551-2	21BH04	S5551-21BH05	S5551-21BH06
		Sample ID	CCME CEQG SQG (CL	NS Tier I EQS ²	RBCA	S5551-21BH01-04	S5551-21BH02-05	S5551-21BH03-03	S5551-21BH04-05	S5551-21BH04-08	S5551-21BH05-07	S5551-21BH06-06
	Sample Date (mm/dd/yyyy)	FG) ¹		Tier I	03/22/2021	03/17/2021	03/16/2021	03/22/2021	Duplicate	03/16/2021	03/18/2021
	Depti	n Interval (m)			NP FG ³ 1.8 - 2.4 2.4 - 3.1 1.2 - 1.8 2.4 - 3.1 2.4 - 3.1						3.7 - 4.3	3.1 - 3.7
Parameter	Unit	RDL	ĺ						Analytical Results			
Volatiles												
Benzene	µg/g	0.02	0.0068	6.9	33.0	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	µg/g	0.08	0.08	1,400	10,000	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Ethylbenzene	µg/g	0.05	0.018	3,100	10,000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes (Total) ⁴	µg/g	0.05	2.4	1,800	10,000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Petroleum Hydrocarbons (PHC)	7											
C6 - C10 (F1) ⁶	µg/g	10	320	n/a	n/a	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX) ⁴	µg/g	10	n/a	n/a	n/a	<10	<10	<10	<10	<10	<10	<10
>C10 - C16 (F2)	µg/g	10	260	n/a	n/a	<10	<10	<10	<10	<10	<10	<10
>C16 - C34 (F3)	µg/g	50	2,500	n/a	n/a	<50	<50	<50	<50	<50	<50	<50
>C34 - C50 (F4)	µg/g	50	6,600	n/a	n/a	<50	<50	<50	<50	<50	<50	<50
Modified TPH ⁵	µg/g	50	n/a	n/a	10,000	<50	<50	<50	<50	<50	<50	<50

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the sample

< Denotes concentration less than indicated detection limit.

n/a Denotes no applicable standard/guideline.

RDL - Reported Detection Limit

TPH Denotes total petroleum parameters.

 UNDERLINE
 Concentration greater than CCME CEQG SQG CL FG Guidelines

 SHADED
 Concentration greater than the Nova Scotia (NS) Tier I EQS

 OUTLINE
 Concentration greater than the RBCA Tier I

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health,

Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated)

² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

³ Provincial Atlantic Risk Based Corrective Action for Petroleum Impacted Sites In Atlantic Canada (RBCA) (Version 3, updated September 2015) - Table 4a Tier 1 Risk based Screening Levels for Soil (Commercial, fine-grained and Non-potable water criteria)

⁴ Xylenes (Total) and C6-C10 (F1 minus BTEX) are calculated parameters. The calculated parameter is non-accredited. The component parameters of the calculation are accredited.

⁵ Sum of C6-C10 (F1 minus BTEX), >C10-C16 (F2), and >C16-C34 (F3).

⁶ The C6-C10 fraction is calculated using toluene response factor.

⁷ The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX contributions.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Table 2: Petroleum Hydrocarbons in Soil

	Sam	ple Location	Federal Guidelines	Provincial	Standards	S5551-21MW01	S5551-21MW03	S5551-21MW02	S5551-21MW04	S5551-21MW05	S5551-21MW06
		Sample ID	CCME CEQG SQG (CL	NS Tier I EQS ²	RBCA	S5551-21MW01-21SS-02	S5551-21MW03-21SS-06	S5551-21MW02-21SS-03	S5551-21MW04-21SS-05	S5551-21MW05-21SS-04	S5551-21MW06-21SS-03
S	Sample Date (nm/dd/yyyy)	FG) ¹		Tier I	03/17/2021	03/15/2021	03/22/2021	03/17/2021	03/15/2021	03/22/2021
	Depth	Interval (m)			EQS	0.6 - 1.2	3.1 - 3.7	1.2 - 1.8	2.4 - 3.1	1.8 - 2.4	1.2 - 1.8
Parameter					NP FG ³		•	Analytica	al Results	•	
Volatiles											
Benzene	µg/g	0.02	0.0068	6.9	33.0	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	µg/g	0.08	0.08	1,400	10,000	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Ethylbenzene	µg/g	0.05	0.018	3,100	10,000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes (Total) ⁴	µg/g	0.05	2.4	1,800	10,000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Petroleum Hydrocarbons (PHC) ⁷											
C6 - C10 (F1) ⁶	µg/g	10	320	n/a	n/a	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX) ⁴	µg/g	10	n/a	n/a	n/a	<10	<10	<10	<10	<10	<10
>C10 - C16 (F2)	µg/g	10	260	n/a	n/a	<10	<10	<10	<10	<10	<10
>C16 - C34 (F3)	µg/g	50	2,500	n/a	n/a	<50	<50	<50	<50	<50	<50
>C34 - C50 (F4)	µg/g	50	6,600	n/a	n/a	<50	<50	<50	<50	<50	<50
Modified TPH ⁵	µg/g	50	n/a	n/a	10,000	<50	<50	<50	<50	<50	<50

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the sample

< Denotes concentration less than indicated detection limit.

n/a Denotes no applicable standard/guideline.

RDL - Reported Detection Limit

TPH Denotes total petroleum parameters.

 UNDERLINE
 Concentration greater than CCME CEQG SQG CL FG Guidelines

 SHADED
 Concentration greater than the Nova Scotia (NS) Tier I EQS

 OUTLINE
 Concentration greater than the RBCA Tier I

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health,

Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated)

² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

³ Provincial Atlantic Risk Based Corrective Action for Petroleum Impacted Sites In Atlantic Canada (RBCA) (Version 3, updated September 2015) - Table 4a Tier 1 Risk based Screening Levels for Soil (Commercial, fine-grained and Non-potable water criteria)

⁴ Xylenes (Total) and C6-C10 (F1 minus BTEX) are calculated parameters. The calculated parameter is non-accredited. The component parameters of the calculation are accredited.

⁵ Sum of C6-C10 (F1 minus BTEX), >C10-C16 (F2), and >C16-C34 (F3).

⁶ The C6-C10 fraction is calculated using toluene response factor.

⁷ The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX contributions.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

	Sample	• Location	Federal Guideline	Provincial Standards	Site Specific	S5551-	21BH01	S5551-	21BH02	S5551	I-21BH03
	:	Sample ID	CCME CEQG SQG	NS Tier I EQS ²	MARLANT	S5551-21BH01-01	S5551-21BH01-09	S5551-21BH02-01	S5551-21BH02-08	S5551-21BH03-01	S55
Sa	ample Date (mn	n/dd/yyyy)	(CL FG) ¹		SSC2 ³	03/22/2021	Duplicate	03/17/2021	03/17/2021	03/16/2021	
	Depth In	iterval (m)				0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	4.3 - 4.9	0.0 - 0.6	
Parameter	Unit	RDL						Analytic	al Results		
Benzo(a)Pyrene Total Potency Equivalents	mg/kg	-	16	5.3	16	0.0141	0.0141	0.0141	0.0141	0.0141	
Carcinogenic PAH	mg/kg	-	IACR <1	n/a	n/a	0.347	0.347	0.347	0.347	0.347	
Benzo(a)anthracene	mg/kg	0.01	10	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzo(a)pyrene	mg/kg	0.01	72	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzo(b)fluoranthene ⁴	mg/kg	0.05	10	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(j+k)fluoranthene	mg/kg	0.05	10	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(ghi)perylene	mg/kg	0.01	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	
Chrysene	mg/kg	0.01	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	
Dibenzo(a,h)anthracene	mg/kg	0.006	10	n/a	n/a	<0.006	<0.006	<0.006	<0.006	<0.006	
Indeno(1,2,3)pyrene	mg/kg	0.01	10	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	
1-Methylnaphthalene	mg/kg	0.05	n/a	72	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	
2-Methylnaphthalene	mg/kg	0.01	n/a	72	2,100	<0.01	<0.01	<0.01	<0.01	<0.01	
Acenaphthene	mg/kg	0.00671	n/a	8,000	32,000	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	
Acenaphthylene	mg/kg	0.004	n/a	66	32,000	<0.004	<0.004	<0.004	<0.004	<0.004	
Acridine	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	
Anthracene	mg/kg	0.03	32	37,000	160,000	<0.03	<0.03	<0.03	<0.03	<0.03	
Benzo(e)pyrene	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	mg/kg	0.05	180	5,300	21,000	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluorene	mg/kg	0.01	n/a	4,100	21,000	<0.01	<0.01	<0.01	<0.01	<0.01	
Naphthalene	mg/kg	0.01	0.013	370	11,000	<0.01	<0.01	<0.01	<0.01	<0.01	
Perylene	mg/kg	0.05	n/a	n/a	16,000	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	mg/kg	0.03	0.046	n/a	21,000	<0.03	<0.03	<0.03	<0.03	<0.03	
Pyrene	mg/kg	0.05	100	3,200	16,000	<0.05	<0.05	<0.05	<0.05	<0.05	
Quinoline	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the soil.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

UNDERLINE SHADED RED Concentration greater than CCME CEQG SQG CL FG Guidelines Concentration greater than the Nova Scotia (NS) Tier I EQS Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health,

Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated)

² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

³ MARLANT Surface Soil Screening Criteria (MARLANT SSC), March 2015.

BH03
S5551-21BH03-07
03/16/2021
3.7 - 4.3
0.0141
0.347
<0.01
<0.01
<0.05
<0.05
<0.01
<0.01
<0.006
<0.01
<0.05
<0.01
<0.00671
<0.004
<0.05
<0.03
<0.05
<0.05
<0.01
<0.01
<0.05
<0.03
<0.05
<0.05

	Sample Location			Provincial Standards	Site Specific	S5551-	21BH04		S5551-21BH05	
	:	Sample ID	CCME CEQG SQG	NS Tier I EQS ²	MARLANT	S5551-21BH04-01	S5551-21BH04-09	S5551-21BH05-01	S5551-21BH05-07	S5551-21BH05-08
Sa	mple Date (mn	n/dd/yyyy)	(CL FG) ¹		SSC2 ³	03/22/2021	Duplicate	03/16/2021	03/16/2021	03/16/2021
	Depth Ir	nterval (m)	, í			0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	3.7 - 4.3	4.3 - 4.9
Parameter	Unit	RDL						Analytical Results		
Benzo(a)Pyrene Total Potency Equivalents	mg/kg	-	16	5.3	16	0.0141	0.0141	0.0141	0.0141	0.0141
Carcinogenic PAH	mg/kg	-	IACR <1	n/a	n/a	0.347	0.347	0.347	0.347	0.347
Benzo(a)anthracene	mg/kg	0.01	10	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	mg/kg	0.01	72	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene ⁴	mg/kg	0.05	10	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(j+k)fluoranthene	mg/kg	0.05	10	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(ghi)perylene	mg/kg	0.01	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h)anthracene	mg/kg	0.006	10	n/a	n/a	<0.006	<0.006	<0.006	<0.006	<0.006
Indeno(1,2,3)pyrene	mg/kg	0.01	10	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01
1-Methylnaphthalene	mg/kg	0.05	n/a	72	n/a	<0.05	<0.05	<0.05	<0.05	<0.05
2-Methylnaphthalene	mg/kg	0.01	n/a	72	2,100	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.00671	n/a	8,000	32,000	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671
Acenaphthylene	mg/kg	0.004	n/a	66	32,000	<0.004	<0.004	<0.004	<0.004	<0.004
Acridine	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	mg/kg	0.03	32	37,000	160,000	<0.03	<0.03	<0.03	<0.03	<0.03
Benzo(e)pyrene	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	mg/kg	0.05	180	5,300	21,000	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	mg/kg	0.01	n/a	4,100	21,000	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01	0.013	370	11,000	<0.01	<0.01	<0.01	<0.01	<0.01
Perylene	mg/kg	0.05	n/a	n/a	16,000	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	mg/kg	0.03	0.046	n/a	21,000	<0.03	<0.03	<0.03	<0.03	<0.03
Pyrene	mg/kg	0.05	100	3,200	16,000	<0.05	<0.05	<0.05	<0.05	<0.05
Quinoline	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the soil.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

UNDERLINE SHADED RED Concentration greater than CCME CEQG SQG CL FG Guidelines Concentration greater than the Nova Scotia (NS) Tier I EQS Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health,

Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated)

² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

³ MARLANT Surface Soil Screening Criteria (MARLANT SSC), March 2015.

	Sample	Location	Federal Guideline	Provincial Standards	Site Specific		S5551-21BH06		S5551-2	21MW01	S5551-21MW02
	ŝ	Sample ID	CCME CEQG SQG	NS Tier I EQS ²	MARLANT	S5551-21BH06-01	S5551-21BH06-08	S5551-21BH06-09	S5551-21MW01-21SS-01	S5551-21MW01-21SS-08	S5551-21MW02-21SS-01
	Sample Date (mn	n/dd/yyyy)	(CL FG) ¹		SSC2 ³	03/18/2021	03/17/2021	Duplicate	03/17/2021	03/17/2021	03/22/2021
	Depth In	iterval (m)				0.0 - 0.6	4.3 - 4.9	4.3 - 4.9	0.0 - 0.6	4.3 - 4.9	0.0 - 0.6
Parameter	Unit	RDL						Analytical Results			Analytical Results
Benzo(a)Pyrene Total Potency Equivalents	mg/kg	-	16	5.3	16	0.0141	0.0141	0.0141	0.0141	0.0141	0.014
Carcinogenic PAH	mg/kg	-	IACR <1	n/a	n/a	0.347	0.347	0.347	0.347	0.347	0.347
Benzo(a)anthracene	mg/kg	0.01	10	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	mg/kg	0.01	72	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene ⁴	mg/kg	0.05	10	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(j+k)fluoranthene	mg/kg	0.05	10	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(ghi)perylene	mg/kg	0.01	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h)anthracene	mg/kg	0.006	10	n/a	n/a	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Indeno(1,2,3)pyrene	mg/kg	0.01	10	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
1-Methylnaphthalene	mg/kg	0.05	n/a	72	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2-Methylnaphthalene	mg/kg	0.01	n/a	72	2,100	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.00671	n/a	8,000	32,000	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671
Acenaphthylene	mg/kg	0.004	n/a	66	32,000	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Acridine	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	mg/kg	0.03	32	37,000	160,000	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Benzo(e)pyrene	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	mg/kg	0.05	180	5,300	21,000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	mg/kg	0.01	n/a	4,100	21,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01	0.013	370	11,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perylene	mg/kg	0.05	n/a	n/a	16,000	<0.05	0.06	<0.05	<0.05	<0.05	<0.05
Phenanthrene	mg/kg	0.03	0.046	n/a	21,000	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Pyrene	mg/kg	0.05	100	3,200	16,000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Quinoline	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the soil.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

UNDERLINE SHADED RED Concentration greater than CCME CEQG SQG CL FG Guidelines Concentration greater than the Nova Scotia (NS) Tier I EQS Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health,

Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated)

² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

³ MARLANT Surface Soil Screening Criteria (MARLANT SSC), March 2015.

	Sample	Location	Federal Guideline	Provincial Standards	Site Specific	S5551-2	21MW03	S5551-2	21MW04	S5551-2	21MW05
	;	Sample ID	CCME CEQG SQG	NS Tier I EQS ²	MARLANT	S5551-21MW03-21SS-01	S5551-21MW03-21SS-06	S5551-21MW04-21SS-01	S5551-21MW04-21SS-08	S5551-21MW05-21SS-01	S5551-21MW05-21SS-07
	Sample Date (mn	n/dd/yyyy)	(CL FG) ¹		SSC2 ³	03/15/2021	03/15/2021	03/17/2021	03/17/2021	03/15/2021	03/15/2021
	Depth In	terval (m)				0.0 - 0.6	3.1 - 3.7	0.0 - 0.6	4.3 - 4.9	0.0 - 0.6	3.7 - 4.3
Parameter	Unit	RDL									
Benzo(a)Pyrene Total Potency Equivalents	mg/kg	-	16	5.3	16	0.0141	0.0141	0.0141	0.0141	0.0141	0.0141
Carcinogenic PAH	mg/kg	-	IACR <1	n/a	n/a	0.347	0.347	0.347	0.347	0.347	0.347
Benzo(a)anthracene	mg/kg	0.01	10	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	mg/kg	0.01	72	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene ⁴	mg/kg	0.05	10	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(j+k)fluoranthene	mg/kg	0.05	10	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(ghi)perylene	mg/kg	0.01	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h)anthracene	mg/kg	0.006	10	n/a	n/a	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Indeno(1,2,3)pyrene	mg/kg	0.01	10	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
1-Methylnaphthalene	mg/kg	0.05	n/a	72	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2-Methylnaphthalene	mg/kg	0.01	n/a	72	2,100	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.00671	n/a	8,000	32,000	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671
Acenaphthylene	mg/kg	0.004	n/a	66	32,000	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Acridine	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	mg/kg	0.03	32	37,000	160,000	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Benzo(e)pyrene	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	mg/kg	0.05	180	5,300	21,000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	mg/kg	0.01	n/a	4,100	21,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01	0.013	370	11,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perylene	mg/kg	0.05	n/a	n/a	16,000	<0.05	0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	mg/kg	0.03	0.046	n/a	21,000	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Pyrene	mg/kg	0.05	100	3,200	16,000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Quinoline	mg/kg	0.05	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the soil.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

UNDERLINE SHADED RED Concentration greater than CCME CEQG SQG CL FG Guidelines Concentration greater than the Nova Scotia (NS) Tier I EQS Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health,

Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated)

² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

³ MARLANT Surface Soil Screening Criteria (MARLANT SSC), March 2015.

	Sample	Location	Federal Guideline	Provincial Standards	Site Specific	S5551-21MW06
	;	Sample ID				S5551-21MW06-21SS-01
Sample	e Date (mn	n/dd/yyyy)				03/22/2021
	Depth In	terval (m)				0.0 - 0.6
Analytic	al Results					
Benzo(a)Pyrene Total Potency Equivalents	mg/kg	-	16	5.3	16	0.0141
Carcinogenic PAH	mg/kg	-	IACR <1	n/a	n/a	0.347
Benzo(a)anthracene	mg/kg	0.01	10	n/a	n/a	<0.01
Benzo(a)pyrene	mg/kg	0.01	72	n/a	n/a	<0.01
Benzo(b)fluoranthene ⁴	mg/kg	0.05	10	n/a	n/a	<0.05
Benzo(j+k)fluoranthene	mg/kg	0.05	10	n/a	n/a	<0.05
Benzo(ghi)perylene	mg/kg	0.01	n/a	n/a	n/a	<0.01
Chrysene	mg/kg	0.01	n/a	n/a	n/a	<0.01
Dibenzo(a,h)anthracene	mg/kg	0.006	10	n/a	n/a	<0.006
Indeno(1,2,3)pyrene	mg/kg	0.01	10	n/a	n/a	<0.01
1-Methylnaphthalene	mg/kg	0.05	n/a	72	n/a	<0.05
2-Methylnaphthalene	mg/kg	0.01	n/a	72	2,100	<0.01
Acenaphthene	mg/kg	0.00671	n/a	8,000	32,000	<0.00671
Acenaphthylene	mg/kg	0.004	n/a	66	32,000	<0.004
Acridine	mg/kg	0.05	n/a	n/a	n/a	<0.05
Anthracene	mg/kg	0.03	32	37,000	160,000	<0.03
Benzo(e)pyrene	mg/kg	0.05	n/a	n/a	n/a	<0.05
Fluoranthene	mg/kg	0.05	180	5,300	21,000	<0.05
Fluorene	mg/kg	0.01	n/a	4,100	21,000	<0.01
Naphthalene	mg/kg	0.01	0.013	370	11,000	<0.01
Perylene	mg/kg	0.05	n/a	n/a	16,000	<0.05
Phenanthrene	mg/kg	0.03	0.046	n/a	21,000	<0.03
Pyrene	mg/kg	0.05	100	3,200	16,000	<0.05
Quinoline	mg/kg	0.05	n/a	n/a	n/a	<0.05

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the soil.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

UNDERLINE SHADED RED

Concentration greater than CCME CEQG SQG CL FG Guidelines Concentration greater than the Nova Scotia (NS) Tier I EQS Concentration greater than MARLANT SSCs

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health,

Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated)

² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

³ MARLANT Surface Soil Screening Criteria (MARLANT SSC), March 2015.

Table 4: Volatile Organic Compounds in Soil

	Sample	Location	Federal Guideline	Provincial Standards	S5551-21BH01	S5551-21BH02	S5551-21BH03	S5551-	21BH04	S5551-21BH05	S5551-21BH06	S5551-21MW01
		Sample ID	CCME CSQG ¹	NS Tier I EQS ²	S5551-21BH01-04	S5551-21BH02-05	S5551-21BH03-03	S5551-21BH04-05	S5551-21BH04-08	S5551-21BH05-07	S5551-21BH06-06	S5551-21MW01-21SS-02
Sar	mple Date (mm		COME CSQG	NS HELLS	03/22/2021	03/17/2021	03/16/2021	03/22/2021	Duplicate	03/16/2021	03/18/2021	03/17/2021
Gai	Depth Int				1.8 - 2.4	2.4 - 3.1	1.2 - 1.8	2.4 - 3.1	2.4 - 3.1	3.7 - 4.3	3.1 - 3.7	0.6 - 1.2
Parameter	Unit	RDL		-	1.0 - 2.4	2.4 - 3.1	1.2 - 1.0	-	vtical Results	5.7 - 4.5	5.1 - 5.7	0.0 - 1.2
Chloromethane	µq/kq	100	n/a	n/a	<100	<100	<100	<100	<100	<100	<100	<100
Vinyl Chloride	µg/kg	20		n/a	<20	<20	<20	<20	<20	<20	<20	<20
Bromomethane	µg/kg	50	n/a	n/a	<50	<50	<50	<50	<50	<50	<50	<50
Chloroethane	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100	<100	<100	<100
Trichlorofluoromethane (FREON 11)	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100	<100	<100	<100
Acetone	µg/kg	500	n/a	n/a	<500	<500	<500	<500	<500	<500	<500	<500
1,1-Dichloroethylene	µg/kg	50	n/a	6,600	<50	<50	<50	<50	<50	<50	<50	<50
Methylene Chloride (Dichloromethane)	µg/kg	100	50,000	110,000	<100	<100	<100	<100	<100	<100	<100	<100
trans-1,2-Dichloroethylene	µg/kg	80	n/a	4,100	<80	<80	<80	<80	<80	<80	<80	<80
1,1-Dichloroethane	µg/kg	100	50,000	39,000	<100	<100	<100	<100	<100	<100	<100	<100
cis-1,2-Dichloroethylene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100	<100	<100	<100
Chloroform	µg/kg	50	n/a	1,500	<50	<50	<50	<50	<50	<50	<50	<50
1,2-Dichloroethane	µg/kg	100	50,000	n/a	<100	<100	<100	<100	<100	<100	<100	<100
1,1,1-Trichloroethane	µg/kg	30	50,000	42,000	<30	<30	<30	<30	<30	<30	<30	<30
Carbon Tetrachloride	µg/kg	50	n/a	n/a	<50	<50	<50	<50	<50	<50	<50	<50
Benzene	µg/kg	6.8	6.8	6,900	<6.8	<6.8	<6.8	<6.8	<6.8	<6.8	<6.8	<6.8
1,2-Dichloropropane	µg/kg	50	50,000	680	<50	<50	<50	<50	<50	<50	<50	<50
Trichloroethylene	µg/kg	10	n/a	140	<10	<10	<10	<10	<10	<10	<10	<10
Bromodichloromethane	µg/kg	100	n/a	130,000	<100	<100	<100	<100	<100	<100	<100	<100
cis-1,3-Dichloropropene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100	<100	<100	<100
trans-1,3-Dichloropropene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100	<100	<100	<100
1,1,2-Trichloroethane	µg/kg	30	50,000	1,100	<30	<30	<30	<30	<30	<30	<30	<30
Toluene	µg/kg	80	80	1,400,000	<80	<80	<80	<80	<80	<80	<80	<80
2-Hexanone	µg/kg	500	n/a	n/a	<500	<500	<500	<500	<500	<500	<500	<500
Dibromochloromethane	µg/kg	100	n/a	76,000	<100	<100	<100	<100	<100	<100	<100	<100
1,2-Dibromoethane	µg/kg	50	n/a	n/a	<50	<50	<50	<50	<50	<50	<50	<50
Tetrachloroethylene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100	<100	<100	<100
1,1,1,2-Tetrachloroethane	µg/kg	100	50,000	1,100	<100	<100	<100	<100	<100	<100	<100	<100
Chlorobenzene	µg/kg	50	n/a	2,700	<50	<50	<50	<50	<50	<50	<50	<50
Ethylbenzene	µg/kg	18	18	3,100,000	<18	<18	<18	<18	<18	<18	<18	<18
m,p-Xylene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100	<100	<100	<100
Bromoform	µg/kg	100	n/a	17,000	<100	<100	<100	<100	<100	<100	<100	<100
Styrene	µg/kg	100	50,000	170,000	<100	<100	<100	<100	<100	<100	<100	<100
1,1,2,2-Tetrachloroethane	µg/kg	50	n/a	940	<50	<50	<50	<50	<50	<50	<50	<50
o-Xylene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100	<100	<100	<100
1,3-Dichlorobenzene	µg/kg	50	10,000	420,000	<50	<50	<50	<50	<50	<50	<50	<50
1,4-Dichlorobenzene	µg/kg	50	10,000	100,000	<50	<50 <50						
1,2-Dichlorobenzene	µg/kg	50	10,000	1,700,000	<50	<0U	<00	<00	<20	<0U	<00	<00

Notes:

Analysis performed at AGAT Halifax All terms defined within the body of SNC-Lavalin's report. Results are based on the dry weight of the soil.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

 UNDERLINE
 Concentration greater than CCME CEQG SQG CL FG Guidelines

 SHADED
 Concentration greater than the Nova Scotia (NS) Tier I EQS

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health, Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated) ² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

Table 4: Volatile Organic Compounds in Soil

	Sample	Location	Federal Guideline	Provincial Standards	S5551-21MW02	S5551-21MW03	S5551-21MW04	S5551-21MW05	S5551-21MW06
	ę	Sample ID	CCME CSQG ¹	NS Tier I EQS ²	S5551-21MW02-21SS-03	S5551-21MW03-21SS-06	S5551-21MW04-21SS-05	S5551-21MW05-21SS-04	S5551-21MW06-21SS-03
Sa	mple Date (mn	n/dd/yyyy)			03/22/2021	03/15/2021	03/17/2021	03/15/2021	03/22/2021
		terval (m)		Ī	1.2 - 1.8	3.1 - 3.7	2.4 - 3.1	1.8 - 2.4	1.2 - 1.8
Parameter	Unit	RDL		Ī		*	Analytical Results		
Chloromethane	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100
Vinyl Chloride	µg/kg	20	n/a	n/a	<20	<20	<20	<20	<20
Bromomethane	µg/kg	50	n/a	n/a	<50	<50	<50	<50	<50
Chloroethane	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100
Trichlorofluoromethane (FREON 11)	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100
Acetone	µg/kg	500	n/a	n/a	<500	<500	<500	<500	<500
1,1-Dichloroethylene	µg/kg	50	n/a	6,600	<50	<50	<50	<50	<50
Methylene Chloride (Dichloromethane)	µg/kg	100	50,000	110,000	<100	<100	<100	<100	<100
trans-1,2-Dichloroethylene	µg/kg	80	n/a	4,100	<80	<80	<80	<80	<80
1,1-Dichloroethane	µg/kg	100	50,000	39,000	<100	<100	<100	<100	<100
cis-1,2-Dichloroethylene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100
Chloroform	µg/kg	50	n/a	1,500	<50	<50	<50	<50	<50
1,2-Dichloroethane	µg/kg	100	50,000	n/a	<100	<100	<100	<100	<100
1,1,1-Trichloroethane	µg/kg	30	50,000	42,000	<30	<30	<30	<30	<30
Carbon Tetrachloride	µg/kg	50	n/a	n/a	<50	<50	<50	<50	<50
Benzene	µg/kg	6.8	6.8	6.900	<6.8	<6.8	<6.8	<6.8	<6.8
1,2-Dichloropropane	µg/kg	50	50,000	680	<50	<50	<50	<50	<50
Trichloroethylene	µg/kg	10	n/a	140	<10	<10	<10	<10	<10
Bromodichloromethane	µg/kg	100	n/a	130,000	<100	<100	<100	<100	<100
cis-1,3-Dichloropropene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100
trans-1,3-Dichloropropene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100
1,1,2-Trichloroethane	µg/kg	30	50,000	1,100	<30	<30	<30	<30	<30
Toluene	µg/kg	80	80	1,400,000	<80	<80	<80	<80	<80
2-Hexanone	µg/kg	500	n/a	n/a	<500	<500	<500	<500	<500
Dibromochloromethane	µg/kg	100	n/a	76,000	<100	<100	<100	<100	<100
1,2-Dibromoethane	µg/kg	50	n/a	n/a	<50	<50	<50	<50	<50
Tetrachloroethylene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100
1,1,1,2-Tetrachloroethane	µg/kg	100	50,000	1,100	<100	<100	<100	<100	<100
Chlorobenzene	µg/kg	50	n/a	2,700	<50	<50	<50	<50	<50
Ethylbenzene	µg/kg	18	18	3,100,000	<18	<18	<18	<18	<18
m,p-Xylene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100
Bromoform	µg/kg	100	n/a	17,000	<100	<100	<100	<100	<100
Styrene	µg/kg	100	50,000	170,000	<100	<100	<100	<100	<100
1,1,2,2-Tetrachloroethane	µg/kg	50	n/a	940	<50	<50	<50	<50	<50
o-Xylene	µg/kg	100	n/a	n/a	<100	<100	<100	<100	<100
1,3-Dichlorobenzene	µg/kg	50	10,000	420,000	<50	<50	<50	<50	<50
1.4-Dichlorobenzene	µg/kg	50	10.000	100.000	<50	<50	<50	<50	<50
1,2-Dichlorobenzene	µg/kg	50	10.000	1,700,000	<50	<50	<50	<50	<50

Notes:

Analysis performed at AGAT Halifax All terms defined within the body of SNC-Lavalin's report. Results are based on the dry weight of the soil.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

 UNDERLINE
 Concentration greater than CCME CEQG SQG CL FG Guidelines

 SHADED
 Concentration greater than the Nova Scotia (NS) Tier I EQS

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health, Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated) ² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

Table 5: Perfluorinated Compounds in Soil

	Sample	Location	Federal (Guidelines	S5551-	21BH01	S5551-21BH01 S5551-21BH03			S5551-21BH04	
	S	ample ID	HC SSV	CCME CEQG	S5551-21BH01-01	S5551-21BH01-08	S5551-21BH01-09	S5551-21BH03-01	S5551-21BH03-07	S5551-21BH04-01	S5551-21BH04-08
Sa	ample Date (mm	/dd/yyyy)	Commercial ¹	Commercial CG ²	03/22/2021	03/22/2021	03/22/2021	03/16/2021	03/16/2021	03/22/2021	Duplicate
	Depth Inte	erval (m)			0.0 - 0.6	4.3 - 4.9	0.0 - 0.6	0.0 - 0.6	3.7 - 4.3	0.0 - 0.6	2.4 - 3.1
Parameter	Unit	RDL						Analytical Results			
Perfluorobutanoic Acid PFBA	µg/kg	1.0	173,000	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoropentanoic Acid PFPeA	µg/kg	1.0	1,210	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorohexanoic Acid PFHxA	µg/kg	1.0	1,210	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroheptanoic Acid PFHpA	µg/kg	1.0	1,210	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctanoic Acid PFOA	µg/kg	1.0	1,050	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorononanoic Acid PFNA	µg/kg	1.0	130	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorodecanoic Acid PFDA	µg/kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroundecanoic Acid PFUnA	µg/kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorododecanoic Acid PFDoA	µg/kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorotridecanoic Acid PFTrDA	µg/kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorotetradecanoic Acid PFTeDA	µg/kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorobutanesulfonic Acid PFBS	µg/kg	1.0	92,000	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorohexasulfonic Acid PFHxS	µg/kg	1.0	3,500	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroheptanesulfonate PFHpS	µg/Kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctasulfonic Acid PFOS	µg/kg	1.0	3,200	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctane sulfonamide PFOSA	µg/Kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorodecanesulfonic Acid PFDS	µg/kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Methylperfluorosulfonamideacetic N-MeFOS	SAA µg/kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Ethylperfluorosulfonamideacetic N-EtFOSA/	Α μg/kg	1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
PFOS + PFOA Additivity Approach ³	None	-	1	n/a	NC	NC	NC	NC	NC	NC	NC
PFOS + PFOA Hazard Index ⁴	None	-	n/a	1	NC	NC	NC	NC	NC	NC	NC

Notes:

Analysis performed at AGAT Montreal

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

NC Denotes Not Calculable.

UNDERLINE SHADED

Concentration greater than HC SSV Commercial Concentration greater than CCME CEQG Commercial CG Surface

¹ Health Canada (HC) Summary Table: Draft Guidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS), Soil Screening Values (SSV), Commercial land use (HC, May 2019)

² The PFAS fact sheet includes a single soil quality guideline for PFOS protective of ecological receptors; coarse grained.

³ The PFOS + PFOA Additivity Approach is calculated in accordance with the equation provided with the guideline (CCME, 2021)

⁴ The PFOS + PFOA Hazard Index is calculated in accordance with the equation provided in Health Canada Guideline (HC, May 2019)

Table 5: Perfluorinated Compounds in Soil

	Sample Location	Federal C	Guidelines	S5551-21BH05	S5551-	21MW02	S5551-21MW05	S5551-2	21MW06
	Sample ID	HC SSV	CCME CEQG	S5551-21BH05-01	S5551-21MW02-21SS-01	S5551-21MW02-21SS-08	S5551-21MW05-21SS-01	S5551-21MW06-21SS-01	S5551-21MW06-21SS-09
	Sample Date (mm/dd/yyyy)	Commercial ¹	Commercial CG ²	03/16/2021	03/22/2021	03/22/2021	03/15/2021	03/22/2021	Duplicate
	Depth Interval (m)			0.0 - 0.6	0.0 - 0.6	4.3 - 4.9	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6
Parameter	Unit RDL					Anal	ytical Results		
Perfluorobutanoic Acid PFBA	µg/kg 1.0	173,000	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoropentanoic Acid PFPeA	µg/kg 1.0	1,210	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorohexanoic Acid PFHxA	µg/kg 1.0	1,210	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroheptanoic Acid PFHpA	µg/kg 1.0	1,210	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctanoic Acid PFOA	µg/kg 1.0	1,050	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorononanoic Acid PFNA	µg/kg 1.0	130	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorodecanoic Acid PFDA	μg/kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroundecanoic Acid PFUnA	μg/kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorododecanoic Acid PFDoA	μg/kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorotridecanoic Acid PFTrDA	μg/kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorotetradecanoic Acid PFTeDA	μg/kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorobutanesulfonic Acid PFBS	μg/kg 1.0	92,000	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorohexasulfonic Acid PFHxS	μg/kg 1.0	3,500	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroheptanesulfonate PFHpS	μg/Kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctasulfonic Acid PFOS	μg/kg 1.0	3,200	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctane sulfonamide PFOSA	μg/Kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorodecanesulfonic Acid PFDS	μg/kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Methylperfluorosulfonamideacetic N-MeFC	DSAA µg/kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Ethylperfluorosulfonamideacetic N-EtFOS	AA μg/kg 1.0	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
PFOS + PFOA Additivity Approach ³	None -	1	n/a	NC	NC	NC	NC	NC	NC
PFOS + PFOA Hazard Index ⁴	None -	n/a	1	NC	NC	NC	NC	NC	NC

Notes:

Analysis performed at AGAT Montreal

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

NC Denotes Not Calculable.

UNDERLINE SHADED

Concentration greater than HC SSV Commercial Concentration greater than CCME CEQG Commercial CG Surface

¹ Health Canada (HC) Summary Table: Draft Guidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS), Soil Screening Values (SSV), Commercial land use (HC, May 2019)

² The PFAS fact sheet includes a single soil quality guideline for PFOS protective of ecological receptors; coarse grained.

³ The PFOS + PFOA Additivity Approach is calculated in accordance with the equation provided with the guideline (CCME, 2021)

⁴ The PFOS + PFOA Hazard Index is calculated in accordance with the equation provided in Health Canada Guideline (HC, May 2019)

Table 5: Perfluorinated Compounds in Soil

	Sample	Location	Federal G	uidelines	S5551-21MW06
		ample ID	HC SSV	CCME CEQG	S5551-21MW06-21Grab-01
Sample	Date (mm	/dd/yyyy)	Commercial ¹	Commercial CG ²	03/22/2021
	Depth Int	erval (m)			7.5
Parameter	Unit	RDL			Analytical Results
Perfluorobutanoic Acid PFBA	µg/kg	1.0	173,000	n/a	<1.0
Perfluoropentanoic Acid PFPeA	µg/kg	1.0	1,210	n/a	<1.0
Perfluorohexanoic Acid PFHxA	µg/kg	1.0	1,210	n/a	<1.0
Perfluoroheptanoic Acid PFHpA	µg/kg	1.0	1,210	n/a	<1.0
Perfluorooctanoic Acid PFOA	µg/kg	1.0	1,050	n/a	<1.0
Perfluorononanoic Acid PFNA	µg/kg	1.0	130	n/a	<1.0
Perfluorodecanoic Acid PFDA	µg/kg	1.0	n/a	n/a	<1.0
Perfluoroundecanoic Acid PFUnA	µg/kg	1.0	n/a	n/a	<1.0
Perfluorododecanoic Acid PFDoA	µg/kg	1.0	n/a	n/a	<1.0
Perfluorotridecanoic Acid PFTrDA	µg/kg	1.0	n/a	n/a	<1.0
Perfluorotetradecanoic Acid PFTeDA	µg/kg	1.0	n/a	n/a	<1.0
Perfluorobutanesulfonic Acid PFBS	µg/kg	1.0	92,000	n/a	<1.0
Perfluorohexasulfonic Acid PFHxS	µg/kg	1.0	3,500	n/a	<1.0
Perfluoroheptanesulfonate PFHpS	µg/Kg	1.0	n/a	n/a	<1.0
Perfluorooctasulfonic Acid PFOS	µg/kg	1.0	3,200	100	<1.0
Perfluorooctane sulfonamide PFOSA	µg/Kg	1.0	n/a	n/a	<1.0
Perfluorodecanesulfonic Acid PFDS	µg/kg	1.0	n/a	n/a	<1.0
N-Methylperfluorosulfonamideacetic N-MeFOSAA	µg/kg	1.0	n/a	n/a	<1.0
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	µg/kg	1.0	n/a	n/a	<1.0
PFOS + PFOA Additivity Approach ³	None	-	1	n/a	NC
PFOS + PFOA Hazard Index ⁴	None	-	n/a	1	NC

Notes:

Analysis performed at AGAT Montreal

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RDL Denotes reported detection limit.

NC Denotes Not Calculable.

UNDERLINE SHADED

Concentration greater than HC SSV Commercial Concentration greater than CCME CEQG Commercial CG Surface

¹ Health Canada (HC) Summary Table: Draft Guidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS), Soil Screening Values (SSV), Commercial land use (HC, May 2019)

² The PFAS fact sheet includes a single soil quality guideline for PFOS protective of ecological receptors; coarse grained.

³ The PFOS + PFOA Additivity Approach is calculated in accordance with the equation provided with the guideline (CCME, 2021)

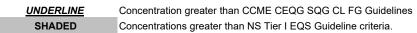
⁴ The PFOS + PFOA Hazard Index is calculated in accordance with the equation provided in Health Canada Guideline (HC, May 2019)

Table 6: Historical Report - Marlant SE Report 466 - 2002 - Metals in Soil

	Samp	le Location	Federal Guidelines	Provincial Standards	HA-1	HA-2	H	4-3	HA-4	HA-5	HA-6	HA-7	HA-8	HA-9
		Sample ID	CCME CEQG SQG (CL	NS Tier I EQS ²	HA-1	HA-2	HA-3	HA-26	HA-4	HA-5	HA-6	HA-7	HA-8	HA-9
	Sample	Date (yyyy)	FG) ¹		2002	2002	2002	Duplicate	2002	2002	2002	2002	2002	2002
		Interval (m)	·		0.0 -1.0	0.0 -1.0	0.0 -1.0	0.0 -1.0	0.0 -1.0	0.0 -1.0	0.0 -1.0	0.0 -1.0	0.0 -1.0	0.0 -1.0
Parameter	Unit	RDL					•		Analytica	al Results		•		
Aluminum	mg/kg	4	n/a	15,400	8,440	5,630	5,000	4,300	16,100	9,990	10,200	7,970	9,230	13,800
Antimony	mg/kg	0.1	40	7.5	0.2	< 0.1	< 0.1	< 0.1	0.1	0.7	0.2	0.2	0.2	0.2
Arsenic	mg/kg	1	12	31	7	4	3	2	9	6	7	7	6	8
Barium	mg/kg	1	2,000	10,000	36	15	28	30	147	44	35	26	49	62
Beryllium	mg/kg	0.1	8	110	0.3	0.1	0.1	0.1	1.3	0.4	0.4	0.2	0.3	0.5
Bismuth	mg/kg	5	n/a	n/a	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Boron	mg/kg	1	n/a	4300	3	2	2	2	6	4	4	4	4	5
Cadmium	mg/kg	0.1	22	49	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chromium	mg/kg	1	87	630	16	8	7	6	25	14	16	11	12	18
Cobalt	mg/kg	0.1	300	22	7.6	2.5	2	1.9	14.9	6.4	6.7	3.1	5.4	10.2
Copper	mg/kg	1	91	4000	16	3	2	2	21	8	12	13	9	12
Iron	mg/kg	20	n/a	11,000	20,800	10,900	8,230	6,610	31,500	20,000	20,900	13,000	18,000	27,200
Lead	mg/kg	0.5	260	260	21.1	6.6	7.4	9.7	12.4	10.9	17.9	15	19.3	12
Magnesium	mg/kg	10	n/a	n/a	4,130	1,700	1,300	1,260	5,160	3,050	3,530	2,030	2,440	3,900
Manganese	mg/kg	1	n/a	360	746	132	98	93	996	339	248	109	319	519
Molybdenum	mg/kg	0.1	40	110	0.7	1.2	0.3	0.2	0.5	0.4	0.5	1.8	0.5	0.8
Nickel	mg/kg	1	89	310	16	7	4	5	33	13	15	8	11	17
Potassium	mg/kg	20	n/a	n/a	700	580	560	510	2,260	1,140	1,130	1,120	1,080	1,740
Rubidium	mg/kg	0.1	n/a	n/a	8.3	7.7	11.5	10	19.8	12.4	12.5	13.8	13.6	14.8
Selenium	mg/kg	1	2.9	125	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1	< 1	< 1
Silver	mg/kg	0.1	40	77	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sodium	mg/kg	50	n/a	n/a	60	< 50	60	50	130	90	90	120	110	100
Strontium	mg/kg	1	n/a	9400	9	5	8	7	15	10	9	10	13	12
Thallium	mg/kg	0.1	1	1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.1	0.1	< 0.1
Tin	mg/kg	3.3	300	9400	4.2	2.9	3.2	3.1	3.4	3.3	3.4	3.1	3.3	3.3
Uranium	mg/kg	0.1	33	33	0.5	0.4	0.4	0.4	0.9	0.6	0.6	0.4	0.6	0.6
Vanadium	mg/kg	1	130	39	16	15	13	11	25	20	22	20	21	23
Zinc	mg/kg	1	410	16000	100	18	14	18	64	32	52	30	40	45

Notes:

Laboratory: RPC, Fredericton, NB


All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the sample

< Denotes concentration less than indicated detection limit.

n/a Denotes no applicable standard/guideline.

RDL - Reported Detection Limit

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health, Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated) ² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

Table 7: Historical Report - Marlant SE Report 466 - 2002 - PHCs in Soil

	Sam	ple Location	Federal Guidelines	Provincial Standards		HA-1	HA-4	HA-7
		Sample ID	CCME CEQG SQG	NS Tier I EQS ²	RBCA	HA-1	HA-4	HA-7
	Sampl	e Date (yyyy)	(CL FG) ¹		Tier I	2002	2002	2002
	Depth	n Interval (m)			NP FG ³	0-1.0	0-1.0	0-1.0
Parameter	Unit	RDL				Analytical Results		
Volatiles								
Benzene	mg/kg	0.005	0.0068	6.9	33.0	ND	ND	ND
Toluene	mg/kg	0.05	0.08	1,400	10,000	ND	ND	ND
Ethylbenzene	mg/kg	0.005	0.018	3,100	10,000	ND	ND	ND
Xylenes	mg/kg	0.05	2.4	1,800	10,000	ND	ND	ND
Petroleum Hydrocarbons (PH	łC)⁴							
Gas Range (C ₆ -C ₁₀)	mg/kg	2.5	n/a	n/a	n/a	ND	ND	ND
Fuel Range (C ₁₀ -C ₂₁)	mg/kg	25	n/a	n/a	n/a	ND	ND	ND
Lube Range (C ₂₁ -C ₃₂)	mg/kg	40	n/a	n/a	n/a	ND	ND	ND
Modified TPH (C ₆ -C ₃₂)	mg/kg	40	n/a	n/a	10,000	ND	ND	ND
Resemblance	n/a	n/a	n/a	n/a	n/a	-	-	-

Notes:

Laboratory: RPC, Fredericton, NB

All terms defined within the body of SNC-Lavalin's report.

Results are based on the dry weight of the sample

< Denotes concentration less than indicated detection limit.

n/a Denotes no applicable standard/guideline.

RDL - Reported Detection Limit

UNDERLINE	Concentration greater than CCME CEQG SQG CL FG Guidelines
SHADED	Concentration greater than the Nova Scotia (NS) Tier I EQS
OUTLINE	Concentration greater than the RBCA Tier I

¹ Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG). Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health, Commercial Land Use (CL), Fine-Grained (FG) Surface Soil (CCME, 1999, as updated)

² Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Soil (Commercial, fine grained)

³ Provincial Atlantic Risk Based Corrective Action for Petroleum Impacted Sites In Atlantic Canada (RBCA) (Version 4, updated July 2021) - Human Health (HH)

Tier 1 Environmental Quality Standards (EQS) for Soil (Commercial, fine-grained and Non-potable water criteria)

⁴ Carbon Ranges have changed, these cannot be compared to the updated guidelines.

Table 8: Dissolved Metals in Groundwater

	Sam	ple Location		Federal Guideline		Provincial Standard	S5551-21MW03	S5551-21MW05	S5551-21MW06		
		Sample ID	CCME CEQG Freshwater	FIGQG Commercial /	Guidelines for Canadian	NS Tier I EQS ⁴	S5551-21MW03-21GW-01	S5551-21MW05-21GW-01	S5551-21MW06-21GW-01	S5551-21MW07-21GW-01	
	Sample Date (mm/dd/yyyy)	Aquatic Life ¹	Industrial Land Use FG ²	Drinking Water Quality		04/23/2021	04/23/2021	04/23/2021	Duplicate	
Parameter	Unit	RDL			(GCDWQ) - MAC ³			Analytica	I Results	•	
Dissolved Aluminum	µg/L	5	5⁵	5⁵	n/a	n/a	<5	<5	<5	<5	
Dissolved Antimony	µg/L	2	n/a	2,000	6	n/a	<2	<2	<2	<2	
Dissolved Arsenic	µg/L	2	5	5	10	n/a	4	<u>14</u>	<u>46</u>	47	
Dissolved Barium	µg/L	5	n/a	2,900	2,000	n/a	363	151	123	123	
Dissolved Beryllium	μg/L	2	n/a	5.3	n/a	n/a	<2	<2	<2	<2	
Dissolved Bismuth	μg/L	2	n/a	n/a	n/a	n/a	<2	<2	<2	<2	
Dissolved Boron	μg/L	5	1,500	1,500	5,000	n/a	23	48	34	34	
Dissolved Cadmium	µg/L	0.09	0.09 6	0.09 6	7	n/a	<0.09	<0.09	<0.09	<0.09	
Dissolved Chromium	µg/L	1	1 7	8.9	50	n/a	5	4	4	3	
Dissolved Cobalt	μg/L	1	n/a	n/a	n/a	n/a	<1	<1	<1	<1	
Dissolved Copper	µg/L	2	2 ⁶	2 ⁶	2,000	n/a	<2	<2	<2	<2	
Dissolved Iron	μg/L	50	300	300	n/a	n/a	<50	<50	<u>671</u>	<u>642</u>	
Dissolved Lead	µg/L	0.5	1 ⁶	1 ⁶	5	n/a	<0.5	<0.5	<0.5	<0.5	
Dissolved Manganese	µg/L	2	500 ⁸	n/a	120	n/a	277	470	242	267	
Dissolved Molybdenum	μg/L	2	73	73	n/a	n/a	<2	18	7	7	
Dissolved Nickel	µg/L	2	25 ⁶	25 ⁶	n/a	n/a	<2	4	<2	<2	
Dissolved Selenium	μg/L	1	1	1	50	n/a	<1	<1	<1	<1	
Dissolved Silver	μg/L	0.1	0.25	0.25	n/a	n/a	<0.1	<0.1	<0.1	<0.1	
Dissolved Strontium	μg/L	5	n/a	n/a	n/a	n/a	330	291	223	240	
Dissolved Thallium	μg/L	0.1	0.8	0.8	n/a	n/a	<0.1	<0.1	<0.1	<0.1	
Dissolved Tin	μg/L	2	n/a	n/a	n/a	n/a	<2	<2	<2	<2	
Dissolved Titanium	μg/L	2	n/a	100	n/a	n/a	<2	<2	<2	<2	
Dissolved Uranium	μg/L	0.1	15 ⁹	15 ⁹	20	n/a	4.7	6.2	2.7	2.6	
Dissolved Vanadium	µg/L	2	n/a	n/a	n/a	n/a	<2	<2	<2	<2	
Dissolved Zinc	µg/L	5	30 ¹⁰	30	n/a	n/a	6	14	<5	<5	

Notes:

Analysis performed at AGAT Halifax

All terms defined within the body of SNC-Lavalin's report.

RDL - Denotes Reported Detection Limit

Metals analysis completed on a filtered sample.

< Denotes concentration less than indicated detection limit.

n/a - Not Applicable

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life
ITALIC	Concentration greater than FIGQG Commercial / Industrial Land Us
OUTLINE	Concentration greater than Guidelines for Canadian Drinking Water
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS

G Commercial / Industrial Land Use FG lines for Canadian Drinking Water Quality (GCDWQ) - MAC ONLY Guideline

¹ Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated)

² Federal Interim Groundwater Quality Guidelines, Commercial and Industrial Land Uses, Fine-grained soil, marine life pathway excluded (FCSAP, 2016).

³ Pathways Included: Maximum Acceptable Concentrations,

⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Guideline is pH dependent. Applied pH 7.0 site wide.

⁶ Guideline is hardness dependent. Applied Hardness 50 mg/L site wide.

⁷ Individual guideline exist for Cr +3 and Cr +6. Reported value represents more stringent guideline.

 $^{8}\,$ Guideline is pH and hardness dependent. Applied pH 7.0 and Hardness 50 mg/L site wide.

⁹ Where guidelines are available for both long-term and short-term exposure scenarios, the more stringent has been applied.

¹⁰ Guideline is hardness, pH and DOC dependent. Guideline applies to dissolved concentrations.

Table 9: Petroleum Hydrocarbons in Groundwater

	Sampl	e Location		Federal Guideline		Provincia	I Standard	S5551-21MW03	S5551-21MW05	S5551-2	1MW06
		Sample ID	CCME CEQG	FIGQG Commercial /	Guidelines for	NS Tier I EQS ⁴	RBCA Tier I 5	S5551-21MW03-21GW-01	S5551-21MW05-21GW-01	S5551-21MW06-21GW-01	S5551-21MW07-21GW-01
	Sample Date (m	m/dd/yyyy)	Freshwater Aquatic	Industrial Land Use	Canadian Drinking			04/23/2021	04/23/2021	04/23/2021	Duplicate
			Life ¹	FG ²	Water Quality						
Parameter	Unit	RDL			(GCDWQ) - MAC ³				Analytica	al Results	
Volatiles			-			-		-			
Benzene	mg/L	0.001	0.37	19	0.005	20	20	<0.001	<0.001	<0.001	<0.001
Toluene	mg/L	0.001	0.09	150	0.14	20	20	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	mg/L	0.001	0.002	240	0.06	20	20	<0.001	<0.001	<0.001	<0.001
Xylene (Total) ⁸	mg/L	0.001	n/a	74	0.09	20	20	<0.001	<0.001	<0.001	<0.001
Petroleum Hydrocarbons				-				-			
C6-C10 (less BTEX)	mg/L	0.01	n/a	9.9	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01
>C10-C16 Hydrocarbons (F2)	mg/L	0.05	n/a	3.1	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05
>C16-C21 Hydrocarbons	mg/L	0.05	n/a	n/a	n/a	n/a	n/a	<0.05	<0.05	<0.05	<0.05
>C21-C32 Hydrocarbons	mg/L	0.01	n/a	n/a	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Modified TPH (Tier 1) ⁷	mg/L	0.05	n/a	n/a	n/a	20 ⁶	20 ⁶	<0.05	<0.05	<0.05	<0.05
Sediment ⁸	n/a	n/a	n/a	n/a	n/a	n/a	n/a	TRACE	YES	TRACE	TRACE
Resemblance Comment	n/a	n/a	n/a	n/a	n/a	n/a	n/a	NR	NR	NR	NR
Return to Baseline at C32	n/a	n/a	n/a	n/a	n/a	n/a	n/a	YES	YES	YES	YES

Notes:

Analysis performed at AGAT Halifax.

All terms defined within the body of SNC-Lavalin's report. RDL - Denotes Reported Detection Limit

n/a - Not Applicable

< Denotes concentration less than indicated detection limit.

NR - No Resemblance

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life				
ITALIC	Concentration greater than FIGQG Commercial / Industrial Land Use FG				
OUTLINE	Concentration greater than Guidelines for Canadian Drinking Water Quality (GCDWQ) - MAC Guideline				
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS				
SHADED	Concentration greater than the RBCA HH Tier I				

¹ Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated)

² Federal Interim Groundwater Quality Guidelines, Commercial and Industrial Land Uses, Fine-grained soil, marine life pathway excluded (FCSAP, 2016).

³ Pathways Included: Maximum Acceptable Concentrations,

⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Provincial Atlantic Risk Based Corrective Action for Petroleum Impacted Sites In Atlantic Canada (RBCA) (Version 3, updated September 2015) - Table 4b Tier 1 Risk Based Screening Levels for Groundwater (Commercial, fine-grained and Non-potable water criteria) ⁶ Most stringent value applied; Modified TPH (Lube).

⁷ Modified TPH, Xylene(Total)and C6-C10(less BTEX) are calculated parameters. The calculated parameter is non-accredited. The component parameters of the calculation are accredited.

⁸ Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Table 10: Polycyclic Aromatic Hydrocarbons in Groundwater

	Sample	Location		Federal Guideline		Provincial Standard	S5551-21MW03	S5551-21MW05	S5551-2	21MW06
	•	Sample ID	CCME CEQG	FIGQG Commercial /	Guidelines for	NS Tier I EQS ⁴	S5551-21MW03-21GW-01	S5551-21MW05-21GW-01	S5551-21MW06-21GW-01	S5551-21MW07-21GW-01
Sar	nple Date (mr	n/dd/yyyy)	Freshwater Aquatic	Industrial Land Use	Canadian Drinking		04/23/2021	04/23/2021	04/23/2021	Duplicate
			Life ¹	FG ²	Water Quality					
Parameter	Unit	RDL			(GCDWQ) - MAC ³			Analytica	I Results	
Acenaphthene	µg/L	0.01	5.8	5.8	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	μg/L	0.01	n/a	46	n/a	17,000	<0.01	<0.01	<0.01	<0.01
Acridine	μg/L	0.01	4.4	0.05	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Anthracene	μg/L	0.012	0.012	0.012	n/a	n/a	<0.012	<0.012	<0.012	<0.012
Benzo(a)anthracene	μg/L	0.018	0.018	0.018	n/a	n/a	<0.018	<0.018	<0.018	<0.018
Benzo(a)pyrene	μg/L	0.010	0.015	0.017	0.04	n/a	<0.010	<0.010	<0.010	<0.010
Benzo(b)fluoranthene ⁵	µg/L	0.01	n/a	0.48	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Benzo(j+k)fluoranthene	μg/L	0.01	n/a	n/a	n/a	n/a	<0.01 <0.01		<0.01	<0.01
Benzo(e)pyrene	μg/L	0.01	n/a	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Benzo(g,h,i)perylene	μg/L	0.01	n/a	0.21	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Chrysene	μg/L	0.01	n/a	1.4	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h)anthracene	μg/L	0.01	n/a	0.28	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Fluoranthene	μg/L	0.01	0.04	0.04	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Fluorene	μg/L	0.01	3	3	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	μg/L	0.01	n/a	0.23	n/a	n/a	<0.01	<0.01	<0.01	<0.01
1-Methylnaphthalene	μg/L	0.01	n/a	180	n/a	n/a	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	μg/L	0.01	n/a	180	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Naphthalene	µg/L	0.01	1.1	1.1	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Perylene	µg/L	0.01	n/a	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/L	0.01	0.4	0.4	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Pyrene	µg/L	0.01	0.025	0.025	n/a	n/a	<0.01	<0.01	<0.01	<0.01
Quinoline	µg/L	0.01	3.4	3.4	n/a	n/a	<0.01 <0.01 <0.01			<0.01
Sediment ⁶	n/a	n/a	n/a	n/a	n/a	n/a	TRACE	TRACE	NO	TRACE

Notes:

Analysis performed at AGAT Halifax. All terms defined within the body of SNC-Lavalin's report. RDL - Denotes Reported Detection Limit n/a - Not Applicable < Denotes concentration less than indicated detection limit.

NR - No Resemblance

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life
ITALIC	Concentration greater than FIGQG Commercial / Industrial Land Use FG
OUTLINE	Concentration greater than Guidelines for Canadian Drinking Water Quality (GCDWQ) - MAC ONLY Guideline
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS
SHADED	Concentration greater than the RBCA Tier I

¹ Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated) ² Federal Interim Groundwater Quality Guidelines, Commercial and Industrial Land Uses, Fine-grained soil, marine life pathway excluded (FCSAP, 2016).

³ Pathways Included: Maximum Acceptable Concentrations,

⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Benzo(j+k)fluoranthene is not an accredited parameter.

⁶ Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Table 11: Volatile Organic Compounds in Groundwater

	Sample	Location		Federal Guideline		Provincial Standard	S5551-21MW03	S5551-21MW05	S5551-21MW06		
		ample ID	CCME CEQG	FIGQG Commercial /	Guidelines for	NS Tier I EQS ⁴	S5551-21MW03-21GW-01	S5551-21MW05-21GW-01	S5551-21MW06-21GW-01	S5551-21MW07-21GW-01	
Sample	Date (mm/	dd/yyyy)	Freshwater Aquatic	Industrial Land Use	Canadian Drinking		04/23/2021	04/23/2021	04/23/2021	Duplicate	
	· · ·		Life ¹	FG ²	Water Quality			·			
Parameter	Unit	RDL			(GCDWQ) - MAC ³			Analytica	al Results		
Acetone	µg/L	10	n/a	13000	n/a	n/a	<10	<10	<10	<10	
Benzene	µg/L	1	370	19000	5	n/a	<1	<1 <1		<1	
Bromodichloromethane	µg/L	1	n/a	8500	n/a	n/a	<1	<1	<1	<1	
Bromoform	µg/L	1	n/a	3700	n/a	130,000	<1	<1	<1	<1	
Bromomethane	µg/L	0.89	n/a	230	n/a	230	<0.89	<0.89	<0.89	<0.89	
Carbon Tetrachloride	µg/L	0.56	13.3	13	2	n/a	<0.56	<0.56	<0.56	<0.56	
Chlorobenzene	µg/L	1	1.3	1.3	80	n/a	<1	<1	<1	<1	
Chloroethane	µg/L	5	n/a	n/a	n/a	n/a	<5	<5	<5	<5	
Chloroform	µg/L	1	1.8	1.8	n/a	n/a	<1	<1	<1	<1	
Chloromethane	µg/L	1	n/a	n/a	n/a	n/a	<1	<1	<1	<1	
1,2-Dichlorobenzene	µg/L	0.7	0.7	0.7	200	n/a	<0.7	<0.7	<0.7	<0.7	
1,3-Dichlorobenzene	µg/L	1	150	150	n/a	n/a	<1	<1	<1	<1	
1,4-Dichlorobenzene	µg/L	1	26	26	5	32,000	<1	<1	<1	<1	
1,1-Dichloroethane	µg/L	1	n/a	44000	n/a	44,000	<1	<1	<1	<1	
1,2-Dichloroethane	µg/L	2	100	100	5	1200	<2	<2	<2	<2	
1,1-Dichloroethylene	µg/L	0.6	n/a	4500	14	27,000	<0.6	<0.6	<0.6	<0.6	
cis-1,2-Dichloroethylene	µg/L	2	n/a	230	n/a	23,000	<2	<2	<2	<2	
trans-1,2-Dichloroethylene	µg/L	2	n/a	230	n/a	25,000	<2	<2	<2	<2	
1,2-Dichloropropane	µg/L	0.7	n/a	2000	n/a	2000	<0.7	<0.7	<0.7	<0.7	
cis-1,3-Dichloropropene	µg/L	0.5	n/a	310 ⁵	n/a	n/a	<0.5	<0.5	<0.5	<0.5	
trans-1,3-Dichloropropene	µg/L	0.5	n/a	310 ⁵	n/a	n/a	<0.5	<0.5	<0.5	<0.5	
Dibromochloromethane	µg/L	1	n/a	250000	n/a	250,000	<1	<1	<1	<1	
1,2-Dibromoethane (Ethylene Dibromide)	µg/L	0.2	n/a	12	n/a	n/a	<0.2	<0.2	<0.2	<0.2	
Ethylbenzene	µg/L	2	90	150000	140	n/a	<2	<2	<2	<2	
Methylene Chloride (Dichloromethane)	µg/L	2	98.1	98	50	410,000	<2	<2	<2	<2	
2-Hexanone	µg/L	10.0	n/a	n/a	n/a	n/a	<10.0	<10.0	<10.0	<10.0	
Styrene	µg/L	1	72	72	n/a	160,000	<1	<1	<1	<1	
1,1,1,2-Tetrachloroethane	µg/L	0.5	n/a	380	n/a	3800	<0.5	<0.5	<0.5	<0.5	
1,1,2,2-Tetrachloroethane	µg/L	1	n/a	210	n/a	2100	<1	<1	<1	<1	
Tetrachloroethylene	µg/L	2	110	110	10	5900	<2	<2	<2	<2	
Toluene	µg/L	2	2	240000	60	n/a	<2	<2	<2	<2	
1,1,1-Trichloroethane	µg/L	1	n/a	1100	n/a	95,000	<1	<1	<1	<1	
1,1,2-Trichloroethane	µg/L	1	n/a	410	n/a	4100	<1	<1	<1	<1	
Trichloroethylene	µg/L	1	21	270	5	540	<1	<1	<1	<1	
Trichlorofluoromethane (FREON 11)	µg/L	5	n/a	n/a	n/a	n/a	<5	<5	<5	<5	
m,p-Xylene	µg/L	4	n/a	n/a	n/a	n/a	<4	<4	<4	<4	
o-Xylene	µg/L	1	n/a	n/a	n/a	n/a	<1	<1	<1	<1	
Vinyl Chloride	µg/L	0.6	n/a	120	2	470	<0.6	<0.6	<0.6	<0.6	

Notes:

Analysis performed at AGAT Halifax.

All terms defined within the body of SNC-Lavalin's report.

RDL - Denotes Reported Detection Limit

n/a - Not Applicable

< Denotes concentration less than indicated detection limit.

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life						
ITALIC	Concentration greater than FIGQG Commercial / Industrial Land Use FG						
OUTLINE	Concentration greater than Guidelines for Canadian Drinking Water Quality (GCDWQ) - MAC ONLY Guideline						
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS						

¹ Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated)

² Federal Interim Groundwater Quality Guidelines, Commercial and Industrial Land Uses, Fine-grained soil, marine life pathway excluded (FCSAP, 2016).

³ Pathways Included: Maximum Acceptable Concentrations,

⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Guideline for 1,3-Dichloropropene applied.

Table 12: Perfluorinated Compounds in Groundwater

	Sam	ple Location		Federal Guideline		Provincial Standard	S5551-21MW03	S5551-2	21MW06
		Sample ID	CCME CEQG	HC Drinking Water	ECCC FEQG Surface	NS Tier I EQS ⁴	S5551-21MW03-21GW-01	S5551-21MW06-21GW-01	S5551-21MW07-21GW-
	Sample Date	(mm/dd/yyyy)	Freshwater Aquatic	Screening Value ²	Water ³		04/23/2021	04/23/2021	Duplicate
Parameter	Unit	RDL	Life ¹	J				Analytical Results	
Perfluorobutanoic Acid PFBA	ng/L	1.0	n/a	30,000	n/a	n/a	<1.0	<1.0	<1.0
Perfluoropentanoic Acid PFPeA	ng/L	1.0	n/a	200	n/a	n/a	<1.0	<1.0	<1.0
Perfluorohexanoic Acid PFHxA	ng/L	1.0	n/a	200	n/a	n/a	<1.0	<1.0	<1.0
Perfluoroheptanoic Acid PFHpA	ng/L	1.0	n/a	200	n/a	n/a	<1.0	<1.0	<1.0
Perfluorooctanoic Acid PFOA	ng/L	1.0	n/a	200 5	n/a	n/a	<1.0	<1.0	<1.0
Perfluorononanoic Acid PFNA	ng/L	1.0	n/a	20	n/a	n/a	<1.0	<1.0	<1.0
Perfluorodecanoic Acid PFDA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
Perfluoroundecanoic Acid PFUnA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
Perfluorododecanoic Acid PFDoA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
Perfluorotridecanoic Acid PFTrDA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
Perfluorotetradecanoic Acid PFTeDA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
Perfluorobutanesulfonic Acid PFBS	ng/L	1.0	n/a	15000	n/a	n/a	<1.0	<1.0	<1.0
Perfluorohexasulfonic Acid PFHxS	ng/L	1.0	n/a	600	n/a	n/a	<1.0	<1.0	<1.0
Perfluoroheptanesulfonate PFHpS	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
Perfluorooctasulfonic Acid PFOS	ng/L	1.0	600	600 ⁵	6800	n/a	<1.0	<1.0	<1.0
Perfluorooctanesulfonamide Acid PFOSA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
Perfluorodecanesulfonic Acid PFDS	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
N-Methylperfluorosulfonamideacetic N-MeFOSAA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0
PFOS/PFOA Index	None	-	n/a	1 ⁷	n/a	n/a	<1.0	<1.0	<1.0

Notes:

Analysis perfomed at AGAT Montréal (unless marked by *).

All terms defined within the body of SNC-Lavalin's report.

RDL - Denotes Reported Detection Limit.

n/a - Not Applicable.

< Denotes concentration less than indicated detection limit.

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life						
ITALIC	Concentration greater than Health Canada (HC) Drinking Water Screening Value						
OUTLINE	Concentration greater than Guidelines for ECCC FEQG Surface Water						
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS						

1 Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated) for PFOS considering ecological receptors (fine grain soil).

² Health Canada (HC) Summary Table: Draft Guidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS) (HC, May 2019)

³ Federal Environmental Quality Guidelines (FEQG) for Perfluorooctane Sulfonate (PFOS), (ECCC, June 2018).

⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Drinking Water Guideline (DWG)

IGW-01

Table 13: Petroleum Hydrocarbon in Groundwater - Blanks

	Sample	Location		Federal Guideline	Federal Guideline		l Standard	Trip Blank			Equipment Blank	Field Blank		
	:	Sample ID	CCME CEQG	FIGQG Commercial /	Guidelines for	NS Tier I EQS ⁴	RBCA Tier I ⁵	TB1	TB2	TB3	EB1	FB2	FB3	FB4
Sample Date (mm/dd/yyyy) F			Freshwater Aquatic	Industrial Land Use	Canadian Drinking			03/15/2021	03/16/2021	03/17/2021	03/15/2021	03/16/2021	03/17/2021	03/18/2021
			Life ¹	FG ²	Water Quality									
Parameter	Unit	RDL			(GCDWQ) - MAC ³						Analytical Results			
Volatiles														
Benzene	µg/L	0.2	370	19,000	5	20,000	20,000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	μg/L	0.2	90	150,000	140	20,000	20,000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	µg/L	0.1	2	240,000	60	20,000	20,000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylene (Total) ⁶	µg/L	0.2	n/a	74,000	90	20,000	20,000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Petroleum Hydrocarbons ⁷							-							
C6 - C10 (F1)	µg/L	63	n/a	n/a	n/a	n/a	n/a	<63	<63	<63	<63	<63	<63	<63
C6-C10 (less BTEX) ⁶	µg/L	63	n/a	9,900	n/a	n/a	n/a	<63	<63	<63	<63	<63	<63	<63
>C10-C16 Hydrocarbons (F2)	µg/L	49	n/a	3,100	n/a	n/a	n/a	<49	<49	<49	<49	<49	<49	<49
C6 - C16 (F1 + F2)	µg/L	49	n/a	n/a	n/a	n/a	n/a	<49	<49	<49	<49	<49	<49	<49
>C16 - C34 (F3)	µg/L	100	n/a	n/a	n/a	n/a	n/a	<100	<100	<100	<100	<100	<100	<100
>C34 - C50 (F4)	µg/L	100	n/a	n/a	n/a	n/a	n/a	<100	<100	<100	<100	<100	<100	<100
>C16 - C50 (F3 + F4)	µg/L	100	n/a	n/a	n/a	n/a	n/a	<100	<100	<100	<100	<100	<100	<100

Notes:

Analysis performed at AGAT Halifax.

All terms defined within the body of SNC-Lavalin's report.

RDL - Denotes Reported Detection Limit

n/a - Not Applicable

< Denotes concentration less than indicated detection limit.

NR - No Resemblance

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life					
ITALIC	ncentration greater than FIGQG Commercial / Industrial Land Use FG					
OUTLINE	oncentration greater than Guidelines for Canadian Drinking Water Quality (GCDWQ) - MAC ONLY Guideline					
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS					
SHADED	Concentration greater than the RBCA Tier I					

¹ Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated)

² Federal Interim Groundwater Quality Guidelines, Commercial and Industrial Land Uses, Fine-grained soil, marine life pathway excluded (FCSAP, 2016).

³ Pathways Included: Maximum Acceptable Concentrations,

⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Provincial Atlantic Risk Based Corrective Action for Petroleum Impacted Sites In Atlantic Canada (RBCA) (Version 3, updated September 2015) - Table 4b Tier 1 Risk Based Screening Levels for Groundwater (Commercial, fine-grained and Non-potable water criteria)

⁶ Modified TPH, Xylene(Total) and C6-C10(less BTEX) are calculated parameters. The calculated parameter is non-accredited. The component parameters of the calculation are accredited.

⁷ Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Table 14: Polycyclic Aromatic Hydrocarbons in Groundwater - Blanks

	Sa	mple L	ocation		Federal Guideline		Provincial Standard		Trip Blank		Equipment Blank		Field Blank			
		Sa	mple ID	CCME CEQG	FIGQG Commercial /	Guidelines for	NS Tier I EQS ⁴	TB1	TB2	TB3	EB1	FB1	FB2	FB3	FB4	
	Sample Date	e (mm/c	dd/yyyy)	Freshwater Aquatic	Industrial Land Use	Canadian Drinking		03/15/2021	03/16/2021	03/17/2021	03/15/2021	03/15/2021	03/16/2021	03/17/2021	03/18/2021	
Life ¹ FG ² Water Quality																
Parameter	I	Unit	RDL			(GCDWQ) - MAC ³					Analytical F	Results				
Acenaphthene	ł	µg/L	0.01	5.8	5.8	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Acenaphthylene	ł	µg/L	0.01	n/a	46	n/a	17,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Acridine	ł	µg/L	0.01	4.4	0.05	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Anthracene	ł	µg/L	0.012	0.012	0.012	n/a	n/a	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	
Benzo(a)anthracene	ł	µg/L	0.018	0.018	0.018	n/a	n/a	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	
Benzo(a)pyrene	ł	µg/L	0.010	0.015	0.017	0.04	n/a	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	
Benzo(b)fluoranthene ⁵		µg/L	0.01	n/a	0.48	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzo(j+k)fluoranthene	ŀ	µg/L	0.01	n/a	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzo(e)pyrene	ŀ	µg/L	0.01	n/a	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzo(g,h,i)perylene	ł	µg/L	0.01	n/a	0.21	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Chrysene	ł	µg/L	0.01	n/a	1.4	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Dibenzo(a,h)anthracene	ł	µg/L	0.01	n/a	0.28	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Fluoranthene	ł	µg/L	0.01	0.04	0.04	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Fluorene	ł	µg/L	0.01	3	3	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	ł	µg/L	0.01	n/a	0.23	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
1-Methylnaphthalene	ł	µg/L	0.01	n/a	180	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
2-Methylnaphthalene	ł	µg/L	0.01	n/a	180	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Naphthalene	ŀ	µg/L	0.01	1.1	1.1	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Perylene	ŀ	µg/L	0.01	n/a	n/a	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Phenanthrene	ŀ	µg/L	0.01	0.4	0.4	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Pyrene	ł	µg/L	0.01	0.025	0.025	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Quinoline	ł	µg/L	0.01	3.4	3.4	n/a	n/a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	

Notes:

Analysis performed at AGAT Halifax. All terms defined within the body of SNC-Lavalin's report. RDL - Denotes Reported Detection Limit n/a - Not Applicable < Denotes concentration less than indicated detection limit.

NR - No Resemblance

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life
ITALIC	Concentration greater than FIGQG Commercial / Industrial Land Use FG
OUTLINE	Concentration greater than Guidelines for Canadian Drinking Water Quality (GCDWQ) - MAC ONLY Guideline
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS

¹ Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated)

² Federal Interim Groundwater Quality Guidelines, Commercial and Industrial Land Uses, Fine-grained soil, marine life pathway excluded (FCSAP, 2016).

³ Pathways Included: Maximum Acceptable Concentrations,

⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Benzo(j+k)fluoranthene is not an accredited parameter.

Table 15: Volatile Organic Compounds in Groundwater Blanks

	Sample Locatio			Federal Guideline		Provincial Standard		Trip Blank		Equipment Blank			
	Sa	ample ID	CCME CEQG	FIGQG Commercial /	Guidelines for	NS Tier I EQS ⁴	TB1	TB2	TB3	EB1	FB2	FB3	FB4
Sample	Date (mm/	dd/yyyy)	Freshwater Aquatic	Industrial Land Use	Canadian Drinking		03/15/2021	03/16/2021	03/17/2021	03/15/2021	03/16/2021	03/17/2021	03/18/2021
			Life ¹	FG ²	Water Quality								
Parameter	Unit	RDL			(GCDWQ) - MAC ³					Analytical Results			
Acetone	µg/L	10	n/a	13000	n/a	n/a	<10	<10	<10	<10	<10	<10	<10
Benzene	µg/L	1	370	19000	5	n/a	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	µg/L	1	n/a	8500	n/a	n/a	<1	<1	<1	<1	<1	<1	<1
Bromoform	µg/L	1	n/a	3700	n/a	130,000	<1	<1	<1	<1	<1	<1	<1
Bromomethane	µg/L	0.89	n/a	230	n/a	230	<0.89	<0.89	<0.89	<0.89	<0.89	<0.89	<0.89
Carbon Tetrachloride	µg/L	0.56	13.3	13	2	n/a	<0.56	<0.56	<0.56	<0.56	<0.56	<0.56	<0.56
Chlorobenzene	µg/L	1	1.3	1.3	80	n/a	<1	<1	<1	<1	<1	<1	<1
Chloroethane	µg/L	5	n/a	n/a	n/a	n/a	<5	<5	<5	<5	<5	<5	<5
Chloroform	µg/L	1	1.8	1.8	n/a	n/a	5	4	<1	<1	<1	<1	<1
Chloromethane	µg/L	1	n/a	n/a	n/a	n/a	<1	<1	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	µg/L	0.7	0.7	0.7	200	n/a	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
1,3-Dichlorobenzene	µg/L	1	150	150	n/a	n/a	<1	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	µg/L	1	26	26	5	32,000	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethane	µg/L	1	n/a	44000	n/a	44,000	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	µg/L	2	100	100	5	1200	<2	<2	<2	<2	<2	<2	<2
1,1-Dichloroethylene	µg/L	0.6	n/a	4500	14	27,000	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
cis-1,2-Dichloroethylene	µg/L	2	n/a	230	n/a	23,000	<2	<2	<2	<2	<2	<2	<2
trans-1,2-Dichloroethylene	µg/L	2	n/a	230	n/a	25,000	<2	<2	<2	<2	<2	<2	<2
1,2-Dichloropropane	µg/L	0.7	n/a	2000	n/a	2000	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
cis-1,3-Dichloropropene	µg/L	0.5	n/a	310 ⁵	n/a	n/a	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	µg/L	0.5	n/a	310 ⁵	n/a	n/a	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	µg/L	1	n/a	250000	n/a	250,000	<1	<1	<1	<1	<1	<1	<1
1,2-Dibromoethane (Ethylene Dibromide)	µg/L	0.2	n/a	12	n/a	n/a	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	µg/L	2	90	150000	140	n/a	<2	<2	<2	<2	<2	<2	<2
Methylene Chloride (Dichloromethane)	µg/L	2	98.1	98	50	410,000	<2	<2	<2	<2	<2	<2	<2
2-Hexanone	µg/L	10.0	n/a	n/a	n/a	n/a	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Styrene	µg/L	1	72	72	n/a	160,000	<1	<1	<1	<1	<1	<1	<1
1,1,1,2-Tetrachloroethane	µg/L	0.5	n/a	380	n/a	3800	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	µg/L	1	n/a	210	n/a	2100	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	µg/L	2	110	110	10	5900	<2	<2	<2	<2	<2	<2	<2
Toluene	µg/L	2	2	240000	60	n/a	<2	<2	<2	<2	<2	<2	<2
1,1,1-Trichloroethane	µg/L	1	n/a	1100	n/a	95,000	<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	µg/L	1	n/a	410	n/a	4100	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	µg/L	1	21	270	5	540	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane (FREON 11)	µg/L	5	n/a	n/a	n/a	n/a	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	µg/L	4	n/a	n/a	n/a	n/a	<4	<4	<4	<4	<4	<4	<4
o-Xylene	µg/L	1	n/a	n/a	n/a	n/a	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	µg/L	0.6	n/a	120	2	470	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6

Notes:

Analysis performed at AGAT Halifax.

All terms defined within the body of SNC-Lavalin's report.

RDL - Denotes Reported Detection Limit

n/a - Not Applicable

< Denotes concentration less than indicated detection limit.

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life
ITALIC	Concentration greater than FIGQG Commercial / Industrial Land Use FG
OUTLINE	Concentration greater than Guidelines for Canadian Drinking Water Quality (GCDWQ) - MAC ONLY Guideline
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS

¹ Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated)

² Federal Interim Groundwater Quality Guidelines, Commercial and Industrial Land Uses, Fine-grained soil, marine life pathway excluded (FCSAP, 2016).

³ Pathways Included: Maximum Acceptable Concentrations,

⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Guideline for 1,3-Dichloropropene applied.

Table 16: Perfluorinated Compounds in Groundwater - Blanks

	Sam	ple Location		Federal Guideline		Provincial Standard		Trip Blank			Equipme	ent Blank	
		Sample ID	CCME CEQG	HC Drinking	ECCC FEQG	NS Tier I EQS ⁴	TB1	TB2	TB3	EB1	EB2	EB3	EB4
	Sample Date (r	nm/dd/yyyy)	Freshwater	Water Screening	Surface Water ³		03/15/2021	03/16/2021	03/17/2021	03/15/2021	03/16/2021	03/17/2021	03/18/2021
Parameter	Unit	RDL	Aquatic Life ¹	Value ²									
Perfluorobutanoic Acid PFBA	ng/L	1.0	n/a	30,000	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoropentanoic Acid PFPeA	ng/L	1.0	n/a	200	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorohexanoic Acid PFHxA	ng/L	1.0	n/a	200	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroheptanoic Acid PFHpA	ng/L	1.0	n/a	200	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctanoic Acid PFOA	ng/L	1.0	n/a	200 5	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorononanoic Acid PFNA	ng/L	1.0	n/a	20	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorodecanoic Acid PFDA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroundecanoic Acid PFUnA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorododecanoic Acid PFDoA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorotridecanoic Acid PFTrDA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorotetradecanoic Acid PFTeDA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorobutanesulfonic Acid PFBS	ng/L	1.0	n/a	15000	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorohexasulfonic Acid PFHxS	ng/L	1.0	n/a	600	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroheptanesulfonate PFHpS	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctasulfonic Acid PFOS	ng/L	1.0	600	600 ⁵	6800	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctanesulfonamide Acid PFOSA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorodecanesulfonic Acid PFDS	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Methylperfluorosulfonamideacetic N-MeFOSAA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

Analysis perfomed at AGAT Montréal (unless marked by *).

All terms defined within the body of SNC-Lavalin's report.

RDL - Denotes Reported Detection Limit.

n/a - Not Applicable.

< Denotes concentration less than indicated detection limit.

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life
ITALIC	Concentration greater than Health Canada (HC) Drinking Water Screening Value
OUTLINE	Concentration greater than Guidelines for ECCC FEQG Surface Water
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS

¹ Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated) for PFOS considering ecological receptors (fine grain soil).

² Health Canada (HC) Summary Table: Draft Guidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS) (HC, May 2019)

³ Federal Environmental Quality Guidelines (FEQG) for Perfluorooctane Sulfonate (PFOS), (ECCC, June 2018).

⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Drinking Water Guideline (DWG)

Table 16: Perfluorinated Compounds in Groundwater - Blanks

	Sam	ple Location		Federal Guideline		Provincial Standard	Field Blank				
		Sample ID	CCME CEQG	HC Drinking	ECCC FEQG	NS Tier I EQS ⁴	FB1	FB2	FB3	FB4	
	Sample Date (mm/dd/yyyy)	Freshwater	Water Screening	Surface Water ³		03/15/2021	03/16/2021	03/17/2021	03/18/2021	
Parameter	Unit	RDL	Aquatic Life ¹	Value ²		Analytical Results					
Perfluorobutanoic Acid PFBA	ng/L	1.0	n/a	30,000	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluoropentanoic Acid PFPeA	ng/L	1.0	n/a	200	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorohexanoic Acid PFHxA	ng/L	1.0	n/a	200	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluoroheptanoic Acid PFHpA	ng/L	1.0	n/a	200	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorooctanoic Acid PFOA	ng/L	1.0	n/a	200 5	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorononanoic Acid PFNA	ng/L	1.0	n/a	20	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorodecanoic Acid PFDA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluoroundecanoic Acid PFUnA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorododecanoic Acid PFDoA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorotridecanoic Acid PFTrDA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorotetradecanoic Acid PFTeDA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorobutanesulfonic Acid PFBS	ng/L	1.0	n/a	15000	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorohexasulfonic Acid PFHxS	ng/L	1.0	n/a	600	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluoroheptanesulfonate PFHpS	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorooctasulfonic Acid PFOS	ng/L	1.0	600	600 ⁵	6800	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorooctanesulfonamide Acid PFOSA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
Perfluorodecanesulfonic Acid PFDS	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
N-Methylperfluorosulfonamideacetic N-MeFOSAA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	ng/L	1.0	n/a	n/a	n/a	n/a	<1.0	<1.0	<1.0	<1.0	

Notes:

Analysis perfomed at AGAT Montréal (unless marked by *).

All terms defined within the body of SNC-Lavalin's report.

RDL - Denotes Reported Detection Limit.

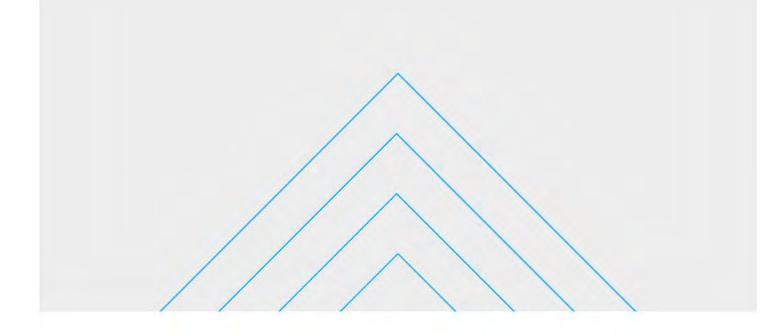
n/a - Not Applicable.

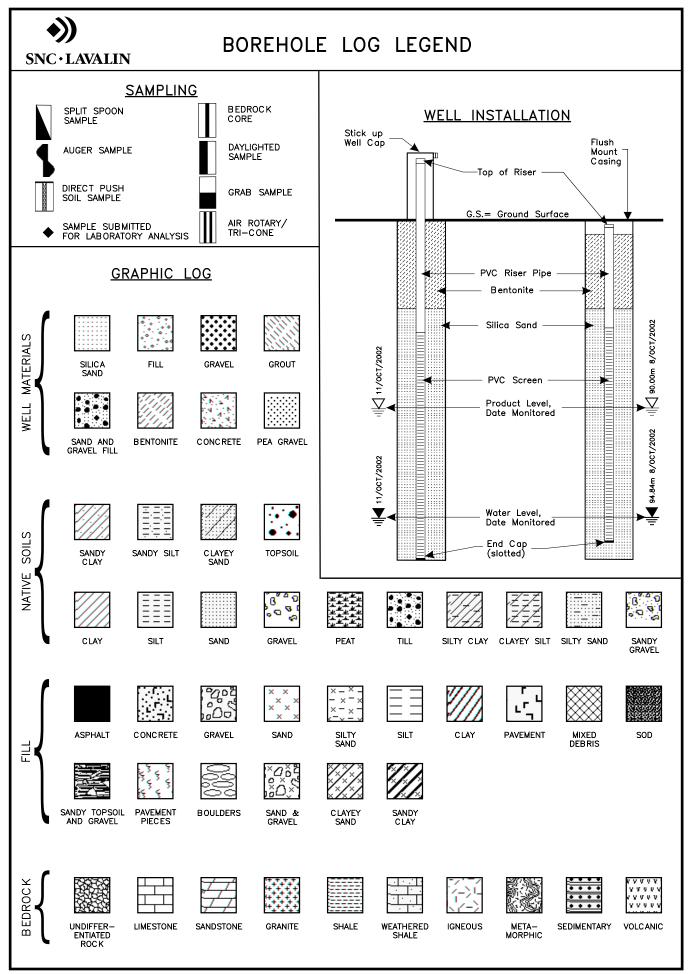
< Denotes concentration less than indicated detection limit.

UNDERLINE	Concentration greater than CCME CEQG Freshwater Aquatic Life
ITALIC	Concentration greater than Health Canada (HC) Drinking Water Screening Value
OUTLINE	Concentration greater than Guidelines for ECCC FEQG Surface Water
SHADOW	Concentration greater than the Nova Scotia (NS) Tier I EQS

¹ Canadian Environmental Quality Guidelines (CEQG). Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (CCME, 1999, as updated) for PFOS considering ecological receptors (fine grain soil).

² Health Canada (HC) Summary Table: Draft Guidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS) (HC, May 2019)


³ Federal Environmental Quality Guidelines (FEQG) for Perfluorooctane Sulfonate (PFOS), (ECCC, June 2018).


⁴ Table 4B Nova Scotia Tier I Environmental Quality Standards for Contaminated Sites (April 2014) for Groundwater, non-potable, Commercial, fine grained.

⁵ Drinking Water Guideline (DWG)

Borehole and Monitoring Well Logs

FILE NAME: 20150918_Legend_BHMW.cdr

Project No.: 680449 Client: DCC Location: Eastern Passage, NS Date Completed: March 22, 2021

Site Datum: Canadian Hydrographic Service Monument

SLI Supervisor: SV Drilling Method: Solid Stem Auger Borehole Diameter: 114 mm Coodinates: 4940201 N 25583749 E Drilling Company: Logan Drilling Drilling Equipment: CME75-2 OVM: Minirae 3000

RECOVERY (%) ELEVATION (m) **GRAPHIC LOG** BLOW SAMPLE LOCATION DEPTH COUNT DESCRIPTION ID OVM (2) (1) Ground Surface 0 ft m 12.94 HUMUS and ORGANICS 1 2 6 12 SILT -01 0 63 1 red-brown, moist, some sand, trace pebble 2 7 6 6 7 3 -02 0 25 12.00 1 4 PEBBLES 3 4 7 10 wet 5 -03 0 100 6 SILT 11.00 2 3 9 14 14 red-brown, dry, some sand and 7 -04 0 25 pebbles 8 6 9 15 14 9 -05 0 83 10.00 3 10 14 13 14 17 -06 0 83 11 12 8 10 12 16 9.00 13 -07 0 92 4 14 wet 4 8 12 15 0 83 15 -08 - = ____ 16 8.00 5 End of hole at 4.9 m bgs 17 18 19 7.00 6 20 (1) Blow count per 0.15 m using conventional hammer and split spoons Sample submitted for laboratory analysis. (2) Organic Vapour Meter (OVM) reading (ppmv unless noted) The data represented in this borehole log requires interpretation by SNC-Lavalin Environment personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Borehole ID: S5551-21BH02

Project No.: 680449 Client: DCC Location: Eastern Passage, NS Date Completed: March 17, 2021

SLI Supervisor: SV Drilling Method: Solid Stem Auger Borehole Diameter: 114 mm Coordinates: 4940281 N 25583695 E

Т

Drilling Company: Logan Drilling Drilling Equipment: CME75-2 OVM: Minirae 3000

Site Datum: Canadian Hydrographic Service Monument

DEPTH	BLOW COUNT (1)	SAMPLE ID	LOCATION	OVM (2)	RECOVERY (%)	GRAPHIC LOG	DESCRIPTION	ELEVATION (m)	
0 ft m						REALESCONDOCUM	Ground Surface	11.54	
	1 1 1 2	-01	\$	0	17		HUMUS and ORGANICS SILT red-brown, some sand, trace pebbles and clay	- - 11.00	
	4 4 12 8	-02	5	0	100			-	
	6 67 10 10	-03	\$	0	42			- 10.00 — -	
7-2 7- 8-	5 7 14 18	-04		0	75			-	
9- - 10	7 8 12 36	-05	\$	0	100		red-brown, some sand, trace pebbles	9.00 — 	
	15 14 30 50	-06	5	0	83		and clay	- - 8.00	
13—4 14—4	6 8 11 14	-07	5	0	92			-	
 15 <i></i> 16 <i></i>	4 6 10 16	-08	5	0	96			- 7.00 — -	
5 17 18							End of hole at 4.9 m bgs	-	
								6.00 — - -	
(1) Blov (2) Org The da Enviror	anic Vapour Me ta represented ment personne	eter (OVM) read	ding (pp e log req s using t	hammer and split : mv unless noted) uires interpretation his log do so at the	by SNC-Lava	alin	Sample submitted for laboratory and	alysis.	1

Project No.: 680449 Client: DCC Location: Eastern Passage, NS Date Completed: March 16, 2021 SLI Supervisor: SV Drilling Method: Solid Stem Auger Borehole Diameter: 114 mm Coordinates: 4940253 N 25583773 E Drilling Company: Logan Drilling Drilling Equipment: CME75-2 OVM: Minirae 3000

Site Da	atum: Car	nadian Hyo	drogra	phic Service	Monum	nent			
DEPTH	BLOW COUNT (1)	SAMPLE ID	LOCATION	OVM (2)	RECOVERY (%)	GRAPHIC LOG	DESCRIPTION	ELEVATION (m)	
0 <u>ft</u> m							Ground Surface	8.80	
	1 3 1 6	-01	\$	0	58		HUMUS and ORGANICS SILT red-brown, some sand, trace pebbles and clay	-	
3- 	3 4 4 6	-02		0	46			8.00	
4 — 5 — –	3 4 5 8	-03	¢	0	100		SAND seam	-	
6 	3 5 6 10	-04	5	0	100		wet / SILT red-brown, some sand, trace pebbles and clay	7.00	
8	9 10 13 15	-05		0	100			- 6.00 -	
11 — 12 —	5 11 10 16	-06	5	0	92			-	
- 13 - 4 - 14 -	5 7 12 16	-07	\$	0	75			5.00 — _ _	
- - 15							End of hole at 4.2 m bgs	-	
16- 5 17-								4.00	
								_	
19 — 6								3.00	
20				hammer and split s nv unless noted)	spoons		 Sample submitted for laboratory ana 	lysis.	
The da	ita represented	in this borehole	e log requ	uires interpretation is log do so at thei	by SNC-Lav r own risk.	/alin		,	
All elev	ations and loca	ations are appro	oximate.						

Project No.: 680449SLI SuperviClient: DCCDrilling MetLocation: Eastern Passage, NSBorehole DiDate Completed: March 22, 2021CoordinatesSite Datum: Canadian Hydrographic Service Monument

SLI Supervisor: SV Drilling Method: Solid Stem Auger Borehole Diameter: 114 mm Coordinates: 4940350 N 25583799 E Drilling Company: Logan Drilling Drilling Equipment: CME75-2 OVM: Minirae 3000

DEPTH	BLOW COUNT (1)	SAMPLE ID	LOCATION	OVM (2)	RECOVERY (%)	GRAPHIC LOG	DESCRIPTION	ELEVATION (m)	
0 <u>ft</u> m							Ground Surface	3.00	
0 0 1 2	1 1 3 4	-01	\$	0	25		TOPSOIL and ORGANICS SILT red-brown, moist, some sand, trace pebbles	-	
2 	3 20 33 6	-02	\$	0	50			- 2.00 — -	-
5 	2 4 8 10	-03	5	0	83			-	-
7- 8-	4 9 20 23	-04	5	0	25			1.00 — - -	-
9	10 9 12 50	-05	S	0	75		dry	-	-
10 - 3 - 3 11 12							End of hole at 2.9 m bgs	0.00 — - -	-
13 — 4 14 — 4								-1.00 — 	-
15 — 								- -2.00 -	
- 18 								-	-
19 6 6								-3.00	-
The da Enviror	ta represented	in this borehole	e log req s using t	hammer and split s mv unless noted) uires interpretation l his log do so at their	by SNC-Lava	alin	Sample submitted for laboratory and	alysis.	

Page 1 of 1

Project No.: 680449 SLI Supervisor: SV Client: DCC Location: Eastern Passage, NS Date Completed: March 16, 2021

Drilling Method: Solid Stem Auger Borehole Diameter: 114 mm Monitoring Well Diameter: 50 mm Site Datum: Hydrographic Service Monument Coordinates: 4940150 N 25583832 E

Drilling Company: Logan Drilling Drilling Equipment: CME75-2 Well Casing: none Well Screen: Schedule 40, Slot 10 PVC OVM: Minirae 3000

DEPTH	BLOW COUNT (1)	SAMPLE ID	SAMPLE LOCATION	OVM (2)	RECOVERY (%)	GRAPHIC LOG	DESCRIPTION	ELEVATION (m)	
-3 -2 -1									
0							Ground Surface	7.79 _	
1 1 2	0 2 3 4	-01	5	0	75		TOPSOIL and Organics sandy SILT grey to red-brown, trace pebbles	-	
2 3 3 	1 4 4 4	-02	5	0	83		pennies	7.00 —	
5 -	3 4 6 12	-03	\$	0	83			_ _ 6.00 —	
6 	9 5 8 9	-04		0	100			-	
8 — 9 — 3	14 19 19 22	-05		0	100			_ 5.00 — _	
0 1 	9 12 50	-06		0	50			-	
2	16 19 50	-07	\$	0	71		SILT grey, dry, some sand, and pebbles	4.00	
4	48 28 46 50	-08	\$	0	100			- - 3.00	
6 - 5 7 - 5 8 - 9 9 - 6	na	na		na	na			 2.00 —	
0							End of Hole at 6.1 m bgs	-	

(1) Blow count per 0.15 m using conventional hammer and split spoons (2) Organic Vapour Meter (OVM) reading (ppmv unless noted)

The data represented in this borehole log requires interpretation by SNC-Lavalin Environment personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated HDPE Teflon free Bailer for sampling.

Sample submitted for laboratory analysis.

4

Project No.: 680449 Client: DCC Location: Eastern Passage, NS Date Completed: March 18, 2021 SLI Supervisor: SV Drilling Method: Solid Stem Auger Borehole Diameter: 114 mm

Coordinates: 4940146 N 25583950 E

Drilling Company: Logan Drilling Drilling Equipment: CME75-2 OVM: Minirae 3000

Site Datum: Canadian Hydrographic Service Monument

DEPTH	BLOW COUNT (1)	SAMPLE ID	LOCATION	OVM (2)	RECOVERY (%)	GRAPHIC LOG	DESCRIPTION	ELEVATION (m)	
0 ft m			_				Ground Surface	4.20	
	push	-01	\$	0	25		TOPSOIL and ORGANICS SILT red-brown, some sand, trace pebbles and clay	4.00	
2 - 3 _ 1	1 2 2 4	-02	\$	0	58			- - 3.00 —	
	1 2 4 6	-03	\$	0	83			3.00 - -	
7 — 2 7 — 2 8 —	1 3 10 13	-04	\$	0	75			- 2.00 — -	
9- - 10	10 13 14 20	-05	5	0	83			-	
	7 7 19 20	-06	\$	0	100		green grey	1.00 — 	
$ \begin{array}{c} 12 \\ - \\ 13 \\ - \\ - \\ 14 \\ - \\ 14 \\ - \\ 14 \\ - \\ 14 \\ - \\ 14 \\ - \\ - \\ 14 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	15 19 20 30	-07		0	100			- - 0.00	
14 — 15 — 16 —	7 11 17 18	-08	\$	0	100			-	
5 17							End of hole at 4.9 m bgs	- -1.00 — -	
18— - 19— - 20— 6								-	
(1) Blov (2) Orga The dat Environ	anic Vapour Me ta represented iment personne	eter (OVM) read in this borehole	ing (ppr log reqi using th	hammer and split s nv unless noted) uires interpretation nis log do so at thei	by SNC-Lava	ı	Sample submitted for laboratory and	alysis.	

All elevations and locations are approximate.

DEPTH -3 -2 -1 -2 -1 -2 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	5 3 5 5 5 7 7 4	SAMPLE ID 21SS-01 21SS-02		OVM (2)	RECOVERY (%)	GRAPHIC LOG	DESCRIPT	ELEVATION (m)			
-3 - -2 - -1 - 1 - 2 - 3 - - 1 - - 3 - - 1 - - 4 - - 1 - - 1 - - 1 - - 1 - -	5 3 5 5 7 4 4		T					— Ш	1		
$ \begin{array}{c} 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 15 \\ 16 \\ 17 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 6 \\ 21 \\ 22 \\ 23 \\ 7 \\ 24 \\ 25 \\ 24 \\ 23 \\ 7 \\ 24 \\ 25 \\ 26 \\ 8 \\ 27 \\ 28 \\ 7 \\ 28 \\ 9 \\ 30 \\ 31 \\ 9 \\ 31 \\ 19 \\ 9 \\ 31 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	8 8 1 5 8 12 16 17 7 13 15 18 7 11 14 17 6 10 14 18 7 11 14 18	2135-02 21SS-03 21SS-04 21SS-05 21SS-06 21SS-07 21SS-08 na		- - - - - - -	 75 100 25 75 100 25 100 100 100 		Grou SAND and GRAVE grey-brown, dry SILT red-brown, dry, son trace pebbles	ne sand, 17.0	April 13, 2021 (Dry)		ug teel Casing — Fill — PVC Riser — Bentonite — Silica Sand — PVC Sceen — End Cap
(2) Orga The data Environi	anic Vapour a represente ment persor).15 m using c Meter (OVM) ed in this borel nnel. Third pa ocations are ap	reading (pp nole log req irties using	omv unless no quires interpre this log do so	eted)	y SNC-Lavali	in	Monitoring well equipped		E Teflon free Bailer for sam	pling. SLE

lient: ocatio ate Co	on: East omplete	80449 tern Passa ed: March anadian H <u>y</u>	22, 20)21	/ice M	Drilling Boreh Well D Coord	pervisor: SV g Method: Solid Stem Auger ole Diameter: 114 mm Monito iameter: 50 mm inates: 4939998 N 25583823 t	ng Company: Logan Drilling ng Equipment: CME75-2 Casing: none Screen: Schedule 40, Slot 10 P ¹ : Minirae 3000	'VC	
EPTH	BLOW COUNT (1)	SAMPLE ID	SAMPLE LOCATION	OVM (2)	RECOVERY (%)	GRAPHIC LOG	DESCRIPTION	ELEVATION (m)		
ft m 							Ground Surface	 	Plug	
	2 1 2 3 3 4 5	21SS-01 21SS-02	ł	0	75		brown, sandy and silty SILT red-brown, some sand, trace pebbles and clay	14.00	Fill	
	7 3 4 6 7	2155-03	\$	0	92			13.00 — _ _ _		C Rise
2 	5 8 12 14 13 16 15	21SS-04 21SS-05	╏	0	100				Ben	ntonite
- - - - - - - -	18 7 12 16 18	21SS-06	\$	0	75			 11.00 — 		
- 	8 13 15 19	21SS-07	<u>}</u>	0	100			- - 10.00	Silic	ca San
 - - - - 5	7 13 15 24	21SS-08	Y	0	100				5021	
	na	na		na	na			9.00		d Cap
			_				Refusal at 6.4 m bgs			

The data represented in this borehole log requires interpretation by SNC-Lavalin Environment personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Sample submitted for laboratory analysis.

4

SLE

Project No.: 680449 Client: DCC

Location: Eastern Passage, NS

Date Completed: March 15, 2021

SLI Supervisor: SV Drilling Method: Solid Stem Auger Borehole Diameter: 114 mm Monitoring Well Diameter: 50 mm

Coordinates: 4940230 N 25583668 E

Drilling Company: Logan Drilling Drilling Equipment: CME75-2 Well Casing: none Well Screen: Schedule 40, Slot 10 PVC OVM: Minirae 3000

Site Datum: Canadian Hydrographic Service Monument ELEVATION (m) RECOVERY (%) **GRAPHIC LOG** BLOW SAMPLE LOCATION SAMPLE DEPTH COUNT DESCRIPTION ID OVM (2) (1) ft m -3 April 13, 2021 Locking Plug -2 -1 Ground Surface 0.00 0 **TOPSOIL** and Organics 0 2 3 47 SILT Fill 21SS-01 0 100 1 red-brown, some sand and pebbles, trace cobbles 2 56 10 6 8 **Bentonite** 2155-02 0 25 3 -1 00 **PVC Riser** 356 5 21SS-03 0 100 6 -2.00 2 SAND seam 8 11 14 21SS-04 0 100 7 SILT red-brown, some sand and 8 pebbles, trace cobbles and clay / 10 11 16 21SS-05 0 96 9 -3.00 3 Silica Sand 10 13 21 27 26 11 21SS-06 0 83 12 sandy SILT 리우 라이우 8 13 15 8 some pebbles, wet from 3.7 to 13 21SS-07 0 100 **PVC Sceen** 4 4.3 m bgs -4.00 14 18 29 24 23 End Cap 15 2155-08 0 38 16 5 -5.00 End of Hole at 4.9 m bgs

(1) Blow count per 0.15 m using conventional hammer and split spoons (2) Organic Vapour Meter (OVM) reading (ppmv unless noted)

The data represented in this borehole log requires interpretation by SNC-Lavalin Environment personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated inertial foot valve and polyethylene tubing for sampling.

Sample submitted for laboratory analysis.

4

Project No.: 680449 Drilling Company: Logan Drilling SLI Supervisor: SV Client: DCC Drilling Equipment: CME75-2 Drilling Method: Solid Stem Auger Location: Eastern Passage, NS Well Casing: none Borehole Diameter: 114 mm Date Completed: March 17, 2021 Well Screen: Schedule 40, Slot 10 PVC Monitoring Well Diameter: 50 mm Site Datum: Hydrographic Service Monument Coordinates: 4940088 N 25583761 E OVM: Minirae 3000 RECOVERY (%) ELEVATION (m) **GRAPHIC LOG** BLOW SAMPLE LOCATION SAMPLE DEPTH COUNT DESCRIPTION ID OVM (2) (1) ft m Locking Plug -3 -2 -1 Ground Surface 16.17 0 **TOPSOIL** and Organics 16.00 SILT and SAND 245 Fill 21SS-01 50 1 grey, moist, trace pebbles SILT 2 red-brown, some sand, trace pebbles and clay 4 6 6 **Bentonite** 2155-02 83 3 15.00 **PVC Riser** 3 4 5 7 SAND 5 21SS-03 100 rusty-brown, wet, some silt April 13, 2021 SILT 6 red-brown, some sand, trace 2 2 4 15 13 pebbles and clay 21SS-04 79 7 14.00 8 fine SAND and SILT 0 12 15 19 21SS-05 9 100 brown, dry SILT 3 Silica Sand 10 red-brown, some sand, trace 13.00 6 12 14 21 pebbles and clay 11 21SS-06 83 12 11 20 23 37 13 21SS-07 25 **PVC Sceen** 4 12.00 14 9 21 24 50 End Cap 15 2155-08 100 16 5 Refusal at 4.9 m bgs 11.00 (1) Blow count per 0.15 m using conventional hammer and split spoons Monitoring well equipped with dedicated inertial foot valve and polyethylene tubing for (2) Organic Vapour Meter (OVM) reading (ppmv unless noted sampling. The data represented in this borehole log requires interpretation by SNC-Lavalin Environment personnel. Third parties using this log do so at their own risk.

Sample submitted for laboratory analysis.

4

All elevations and locations are approximate.

SLE

Project No.: 680449 SLI Supervisor: SV Drilling Company: Logan Drilling Client: DCC Drilling Method: Solid Stem Auger Drilling Equipment: CME75-2 Borehole Diameter: 114 mm Location: Eastern Passage, NS Well Casing: none Date Completed: March 15, 2021 Monitoring Well Diameter: 50 mm Well Screen: Schedule 40, Slot 10 PVC Site Datum: Hydrographic Service Monument Coordinates: 4940208 N 25583832 E OVM: Minirae 3000 RECOVERY (%) ELEVATION (m) **GRAPHIC LOG** BLOW SAMPLE LOCATION SAMPLE DEPTH COUNT DESCRIPTION ID OVM (2) (1) ft m Locking Plug -3 -2 -1 Ground Surface 10.03 0 10.00 **TOPSOIL** and Organics 2 sandy SILT Fill 21SS-01 0 100 1 3 grey to grey brown SILT 2 red-brown, dry, some sand, 7 6 7 10 trace clay and pebbles **Bentonite** 2155-02 0 100 3 9.00 **PVC Riser** 3 4 5 21SS-03 0 100 5 April 13, 2021 6 moist 2 6 8.00 SAND seam 21SS-04 0 100 9 14 brown, wet, some silt, poorly sorted 8 SILT 12 15 18 24 red-brown, dry, some sand, 21SS-05 0 9 100 trace clay and pebbles 3 7.00 Silica Sand 10 22 23 29 25 11 21SS-06 0 100 SAND brown, wet, some silt 12 SILT = ____ 6 red-brown, wet, some sand, 8 11 17 13 21SS-07 0 100 **PVC Sceen** 4 <u> - - - -</u> trace clay and pebbles 6.00 ÷= == = = = 14 End of Hole at 4.3 m bgs End Cap 15 16 5 5.00 (1) Blow count per 0.15 m using conventional hammer and split spoons

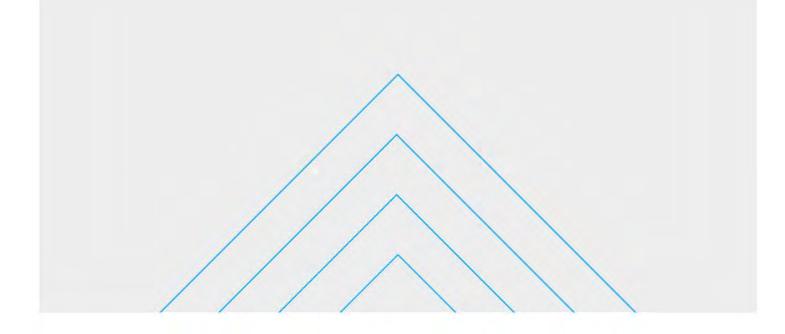
Blow count per 0.15 m using conventional hammer and split spoons
 Organic Vapour Meter (OVM) reading (ppmv unless noted)

The data represented in this borehole log requires interpretation by SNC-Lavalin Environment personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated HDPE Teflon free Bailer for sampling.

Sample submitted for laboratory analysis.


4

Cli Lo Da	ent: cati te C	omplete	tern Pass ed: March	n 22, 2	021	ment	Drillin Boreh Monite	ole Diamet	SV Solid Stem Auger ter: 114 mm Diameter: 50 mm 10262 N 25583891	Dr We We	illing Compan illing Equipme ell Casing: nor ell Screen: Sch /M: Minirae 300	ent: CME7 ne nedule 40,	5-2
DE	РΤΗ	BLOW COUNT (1)	SAMPLE ID	SAMPLE LOCATION	OVM (2)	RECOVERY (%)	GRAPHIC LOG	DE	SCRIPTION	ELEVATION (m)	April 13, 2021 (Artesian)		
-3 - -2 - -1 -	m									4.00 -	April 13, 2		— Locking Plug
0-		1 1 3	21SS-01	•		33		TOPSOIL a	Ground Surface	3.58			Fill
2	- - - 1	4 3 3 4 5	21SS-02	₹	-	83		∖grey SILT	some sand, trace	3.00 -			
4- 5-	-	2 4 7 6	21SS-03	¢	-	75		pebbles an	d clay	2.00 -			PVC Riser
6- 7- 8-	- 2	4 5 12 16	21SS-04	5	-	83							2
9-	- 3	9 50	21SS-05	5	-	67				1.00 -			
11 - 12 -	-	5 8 12 15	21SS-06	5	-	83				0.00 -			
13 — 14 —	- 4	11 18 14 15 6	21SS-07	<u>}</u>	-	88							PVC Sceen
15 — 16 —	- 5	9 13 16	21SS-08	Y	-	75				-1.00 -			
(i T E	- 6 - 7 - 8 - 2) Org ihe da inviror	anic Vapour ta represent iment perso	Meter (OVM) ed in this bore	reading (p hole log re arties usin	na na hammer and opmv unless no equires interpre g this log do so e.	ted) tation by	y SNC-Laval	moist Refusal at 8	_		n dedicated HDPE Tefl	on free Bailer fo	End Cap
									4				SLE

Appendix D

Preliminary Conceptual Site Model

Appendix D

Conceptual Site Model

Contents

1.1	Chemical Hazard Identification	2
1.1.1	Soil COPC Screening	2
1.1.1.1	Secondary Screening Benchmarks	2
1.1.1.2	Results of the Secondary Soil COPC Screening	3
1.1.2	Groundwater COPC Screening	4
1.1.2.1	Protection of Human Health	4
1.1.2.2	Protection of Ecological Receptors	4
1.1.2.3	Results of the Groundwater COPC Screening	5
1.2	Summary of Final COPCs	6
1.3	Human and Ecological Receptor Selection and Exposure Pathway Identification	6
1.3.1	Human Receptor and Exposure Pathway Identification	6
1.3.2	Ecological Receptor and Exposure Pathway Identification	8
1.4	Summary of Conceptual Site Model	9
1.5	References	0

The Hartlen Point Conceptual Site Model (CSM) provides information on the sources, types, and extent of the known contamination, as well as the release and transport mechanisms, possible subsurface migration pathways, and potential receptors and the routes of exposure to contamination. The physical characteristics of the Site and the results of the sampling programs have been presented in the main body of the report. The CSM includes screening for contaminants of potential concern COPCs, the identification of human and ecological receptors of concern (ROCs) and determination of associated potentially operable exposure pathways between ROCs and COPCs under the current commercial land (CL) use and the anticipated future condition of the Site. A summary of the outcomes of the CSM is provided in section 1.3 and in attached Figure D-1.

1.1 Chemical Hazard Identification

The following sections discuss the identification of COPCs at the Site given the presence of residual soil and groundwater contamination. The identification of COPCs considers contaminant concentrations that exceed exposure pathway guidelines/standards (discussed below).

1.1.1 Soil COPC Screening

All residual contamination in soil at the Site, as summarized in Section 9.4 and 9.5 in the main report, were retained as preliminary COPCs. Preliminary COPCs in soil included arsenic and iron. A secondary screening was conducted to identify site-specific COPCs that would be retained for exposure assessment for both human and ecological receptors. The identification of COPC sample depth was not reported; therefore, all COPCs were assumed to be potentially present within the surficial soils at depths of \leq 1.5 metres below ground surface (m bgs) and considered for direct contact exposure for both human health and ecological ROCs.

The identification of human and ecological ROCs (and potentially operable exposure pathways) is presented in Section 1.2 of this Appendix.

1.1.1.1 Secondary Screening Benchmarks

Secondary COPCs for the protection of human health and ecological receptors were identified by comparing maximum residual soil Contaminant concentrations with receptor/exposure pathway specific CCME guidelines, where available. Receptor/exposure pathway guidelines/standards from other Canadian jurisdictions (see below) were used to identify secondary COPCs for parameters with no CCME guidelines. Secondary groundwater COPCs were identified based on measured groundwater concentrations and therefore soil guidelines protective of soil leaching to groundwater used by aquatic life were not applied in the secondary screening. Vapour check values were not applied as no indoor/outdoor vapour contaminants were identified. The soil dataset on which COPC screening took place included all residual soil sampling locations (as shown Figure 3 in the main report).

The COPC screening benchmarks used in the HHERA were consistent with the CL guidelines applied in the main report, as well as assumptions for current and future use at the Site. As such, the screening benchmarks used to identify COPCs to human health and ecological receptors in soils at all depths investigated, were the following:

> For the protection of human health exposure pathways, the following CCME SQG human health check values (SQG_{HH}) were used:

- Direct Contact soil ingestion or soil dermal contact, whichever was the lowest (for identification
 of secondary COPCs for the protection of human health).
- > For the protection of ecological receptor exposure pathways, the following CCME SQG ecological check values (SQG_{Eco}) were used:
 - Direct Contact soil contact, soil and food ingestion, whichever was the lowest (for the identification of COPCs for the protection of ecological receptors).

Preference was given to the CCME exposure pathway guidelines, where available. However, for parameters for which receptor/exposure pathway guidelines are not available from the CCME, the BC CSR exposure pathway benchmarks were used to identify secondary soil COPCs. Specifically, the BC ENV Contaminated Sites Regulation (CSR) (2019) Schedule 3.1 Part 1 CL Matrix Numerical Soil Standards (standards for human health protection – intake of contaminated soil and for environmental protection – toxicity to soil invertebrates and plants). Where CSR Schedule 3.1 Part 1 standards were not available, the Part 2 Generic Soil Standards specific to human health and ecological health were referenced. In accordance with Health Canada (2021) guidance, BC CSR soil matrix standards incorporated a factor of 0.2x (20%) of the toxicity reference value during their development, consistent with the CCME (2006) soil quality guideline derivation procedure. If no pathway or receptor specific guideline/standard was available, the nonpotable soil Nova Scotia Tier 1 Environmental Quality Standard for CL was applied.

Where maximum concentrations exceeded both the regional background soil concentration (obtained from Dillon [2011]) and the relevant guideline/standard, the preliminary COPC was retained as a final COPC for further consideration in the CSM.

1.1.1.2 Results of the Secondary Soil COPC Screening

Table 1 below, presents the results of the secondary COPC screening at the Site for soil (assuming surface soil ≤1.5 m bgs).

	Maximum Soil	Location of	Background		re Pathway Benchmarks		d as a Final PC for
Preliminary COPC	Concentration Detected (mg/kg)	Maximum Concentration	Soil Concentration (mg/kg)	Human Intake of Soil (µg/g)	Toxicity to Soil Invertebrates and Plants (μg/g)	Human Health?	Terrestrial Ecological?
			Site				
Arsenic	15	S5551-21BH06 -09ª	7.16	12 (31) ^b	26 ^b	Yes*	No
Iron	27,800	S5551-21MW06- 21SS-01	25,739	150,000°	11,000 ^d	No	Yes

Table 1:Secondary Soil COPC Screening (Surface Soil ≤1.5 m bgs)

Notes:

Regional background soil concentration for Central Uplands Soil Zone, 95% Student's-t UCL (n=8) (Dillon, 2011)

Bold Preliminary COPC concentration exceeds exposure pathway-specific benchmarks; identified as a COPC

a Duplicate of S5551-21BH06-08

- ^b CCME SQG exposure pathway guideline for the protection of human health (direct soil ingestion + dermal contact; produce consumption) or ecological direct soil contact (land use specific); note that 12 mg/kg is the level for protection of incremental lifetime cancer risk 10⁻⁶; 31 mg/kg provides 10⁻⁵ protection (ECCC, 1999)
- ^c CSR Schedule 3.1 Part 2 or Part 3 Generic Numerical Soil Standards for the protection of human health or ecological health (land use specific)
- ^d Nova Scotia Tier 1 Environmental Quality Standard for soil, commercial land use, non-potable

* Conservatively carried forward for additional evaluation; guideline is protective of incremental lifetime cancer risk of 10⁻⁶

CCME SQG Canadian Council of Ministers of the Environment Soil Quality Guidelines

1.1.2 Groundwater COPC Screening

All residual contamination in groundwater at the Site, were retained as preliminary groundwater COPCs, which included arsenic and iron in groundwater. A secondary screening was conducted to identify site-specific COPCs that would be retained for exposure assessment for both human and ecological receptors. Groundwater is not used for potable or domestic use (i.e., including bathing/showering, cooking, gardening, drinking, etc.) at the Site, and there are no domestic wells located either down or cross-gradient from the Site, as groundwater flows to the east towards Cow Bay, while the nearest water well is located 750 m north (see Attachment 1). Groundwater at the Site has been observed at average depths ranging from 0.25 to 6.16 m bgs across the entire property. Figure in the main report details the preliminary COPCs in groundwater at the Site, as identified in the main report.

1.1.2.1 Protection of Human Health

To identify COPCs for further evaluation in the CSM (i.e., dermal contact with groundwater), maximum concentrations of preliminary groundwater COPCs were compared to water quality guidelines protective of human health. Though considered highly conservative, drinking water guidelines were used for screening as listed below, in order of preference:

- > Health Canada, Canadian Drinking Water Guidelines; and
- > BC CSR Schedule 3.2, Generic Numerical Water Standards, for Drinking Water.

As groundwater is located at depths < 1.5 m bgs, dermal contact with groundwater is possible for both human receptors at-grade as well as those conducting subsurface work (further discussion of receptors and exposure pathways presented in Section 1.2). It is noted that for the purposes of evaluating dermal exposures for human receptors at-grade and/or in the event of subsurface activity (e.g., construction and/or maintenance work), screening against the drinking water (DW) guidelines/standards is a conservative approach; groundwater exposures under this scenario would be limited to the dermal absorption pathway (as incidental ingestion of groundwater during such activities is expected to be insignificant), and such exposures would be a small fraction of that for the ingestion of groundwater via the drinking water pathway.

To identify COPCs for the protection of human health, the groundwater data considered representative of current conditions has been screened against the HC DW or the BC CSR DW standards. Maximum concentrations were used for the screening of groundwater COPCs at the Site.

1.1.2.2 Protection of Ecological Receptors

To identify COPCs in groundwater for further evaluation for the protection of ecological receptors, maximum concentrations of preliminary groundwater COPCs were compared to groundwater quality guidelines for the protection of aquatic life (marine). It is understood that there is possible groundwater COPC discharges into the marine aquatic receiving environment to the east of the Site. Direct contact of plant roots with groundwater below the water table is only of concern for phreatophyte species (e.g., poplars, willows) which can draw water directly from the water table (CCME, 2015). The roots of non-phreatophytes (i.e., most plant species) do not penetrate the water table since they rely on oxygen in soil gas to support root respiration (CCME, 2015). Various processes can result in the movement of groundwater, potentially carrying contaminants, into the vadose zone (i.e., soil) where contaminants can encounter the roots of non-phreatophyte species.

Based on CCME (2015), the identification of soil COPCs was completed and was considered sufficient for the protection of terrestrial plants (and invertebrates).

The guidelines used to screen for ecological groundwater COPCs are listed below, in order of preference:

- > Federal Interim Groundwater Quality Guidelines (FIGWQG) Tier 2 CL (T2 CL);
- > CCME CEQG Aquatic Life (AW) Guidelines (applicable to porewater);
- > BC CSR Schedule 3.2, Generic Numerical Water Standards for Drinking Water.

Where maximum concentrations exceeded the regional background groundwater concentration range (obtained from NSE [2015]), as well as the relevant guideline/standard, the preliminary COPC was retained as a final COPC for further consideration in the CSM. If not guideline/standard was available for a parameter, it was conservatory carried forward if the maximum concentration exceeded background.

1.1.2.3 Results of the Groundwater COPC Screening

Results of the groundwater COPC screening is presented below in Table 2.

	Maximum		Background		ure Pathway Benchmarks		ed as a Final OPC for
Preliminary COPC	Representative Concentration (µg/L)	Location	Concentration Range (µg /L)	Human Dermal Contact (µg/L)	Aquatic Receiving Environment (μg/L)	Human Health?	Aquatic Receiving Environment?
			Site				
Arsenic	47	S5551- 21MW07- 21GW-01ª	18 - 65.7	10 ^b	12.5°	No	No
Iron	671	S5551- 21MW06- 21GW-01	51 - 734	6,500 ^d	n/a	No	No

Table 2: Groundwater COPC Screening Results

Notes:

Regional background groundwater concentration range obtained from NSE (2015); values specific to Lawrencetown, Lewis Lake, Smileys Park and Rainbow Haven monitoring wells (*n*=4)

Bold Preliminary COPC concentration exceeds exposure pathway-specific benchmarks; identified as a COPC

COPC Contaminant of Potential Concern

n/a No guideline available

^a Duplicate of S5551-21MW06-21GW-01

^b Health Canada Drinking Water Guidelines

^c CCME Federal Interim Groundwater Quality Guidelines (Commercial land uses) for the protection of the marine aquatic receiving environment

^d Although a HC DWG is available for this parameter, the BC CSR Schedule 3.2 Part 3 Generic Numerical Groundwater Standards for the protection of drinking water was selected as the appropriate standard for protection of dermal contact as the HC DWG is based on an aesthetic objective only, while the BC CSR Standard is based on toxicity data and more recent science.

1.2 Summary of Final COPCs

Table 3 below provides a summary of the COPCs retained for assessment in each of the media types at the Site.

Table 3:	Summary of Final COPCs by Media Type at the Site
----------	--

Media Type	Human Health COPCs	Ecological Receptors COPCs
	Site	
Soil (≤ 1.5 m bgs)	Arsenic*	Iron
Subsurface Soil (> 1.5 m bgs)	-	-
Groundwater	No COPCs	No COPCs

Notes:

COPC Contaminant of potential concern

- No COPCs identified in this media type

Screening criteria is protective of 1 x 10⁻⁶ level of incremental lifetime cancer risk (ILCR); no associated exceedances of ILCR of 1 x 10⁻⁵ for arsenic (ECCC, 1999)

1.3 Human and Ecological Receptor Selection and Exposure Pathway Identification

In this section, human and ecological ROCs are identified along with potential exposure pathways to secondary COPCs identified in soil and groundwater at the Site.

1.3.1 Human Receptor and Exposure Pathway Identification

Potential receptors groups considered for evaluation were based on assumed current/future uses at the Site and are consistent with CCME (2016) and Health Canada (2021) guidance and included the following:

- > Commercial receptors (maintenance/construction workers);
- > Visitors;
- > Recreational receptors;
- > Off-Site Receptors (toddler and adults) in surrounding areas; and
- > Future Drinking Well Users.

The Site is currently occupied by approximately 177 hectares of largely undeveloped land on a small point (Hartlen Point) at the mouth of Halifax Harbour. The proposed future land use includes structure that will be designed to accommodate a land-based training mock-up for the future Canadian frigate; the building is anticipated to incorporate office/planning/meeting areas, warehousing, technical workshops, training areas, operations areas, and laydown area, and site infrastructure is anticipated to include paved vehicle parking, trailer space and security fencing (Stantec, 2020; Government of Canada, 2021). Road access and municipal service extensions are expected to be required.

Current commercial receptors, including workers, are not expected to frequent the Site regularly. The only building on-Site is the HP151 Crash Guard Tactical Air Navigation building. As the Site is just outside the Eastern Passage community, and active recreational trails are nearby, recreational receptors were also considered as ROCs given the proximity of the Site to the beach and trail network that may result in recreational receptor presence at the Site, although presence would likely be infrequent and limited to the shoreline.

It is assumed that commercial receptors and visitors at the Site will only be adults, while recreational receptors may be of any age. At-grade human ROCs are exposed to surface media (soil/groundwater) to a depth of ≤ 1.5 m bgs per CCME (2006)¹ guidance and for the protection of human health for potential human ROCs at-grade, COPCs were assumed to be present in surface soil (≤ 1.5 m bgs). Depth to groundwater at the Site has been measured at (≤ 1.5 m bgs; therefore, there is potential for ROCs to contact surficial groundwater. Indirect exposure pathway to soil COPCs, via the incidental consumption of plant tissue (i.e., berries) was not retained as a potential exposure pathway based on the likely limited presence of human ROCs at the Site.

Off-Site human receptors (all age groups) were also identified as potential ROCs; however, they were not quantitatively evaluated in the HHERA given that outdoor air COPCs were not identified and the nearest off-Site building (at the Hartlen Point Force Golf Club) is > 30 m to the west. While it is acknowledged that soil impacts, may not be entirely delineated, and may extend off-Site, the Site is bordered by the beach and ocean and direct contact exposures to off-Site soils (containing COPCs originating from the Site) are not likely. Despite no operable direct contact pathways for off-Site receptors, direct contact exposures to on-Site ROCs are assumed to be protective of off-Site ROC exposures.

Arsenic was identified as a COPC in soil for protection of direct contact for human health. The maximum concentration of 15 mg/kg is approximately two times greater than the regional background concentration of 7.16 mg/kg (Dillion, 2011). However, the total number of exceedances in soil at the Site was limited to three sampling locations of 25, with an average and 90th percentile concentration of 8.9 and 12.4 mg/kg, respectively. Additional statistical analysis indicated that the 95% UCLM, calculated using US EPA ProUCL Version 5.1 (with further input from Helsel [2012]), at the Site for arsenic is 9.7 mg/kg (95% Student's-t UCL, see Attachment 2). The descriptive statistics for the soil arsenic concentrations throughout the Site indicate that concentrations generally do not exceed the CCME SQG. The soil exceedances are limited to three sampling locations in the center of the Site within a forested area. Also of note in the supporting technical information for arsenic (ECCC, 1999) documents the levels of protection used in derivation of the CCME SQG with reference to the accepted incremental lifetime cancer risk (ILCR). The screening reference criteria of 12 mg/kg is protective of a 1 x 10⁻⁶ or one in a million ILCR. The generally acceptable level of ILCR used for the protection of federal lands in Canada is within 1 to 10 in a million. As such, the applicable SQG for 1 x 10⁻⁵ is 31 mg/kg. In comparison with this range the maximum arsenic concentration measured in soils at the Site is less than the screening level guideline.

Based on the low likelihood of human ROC presence at the Site for both commercial works, visitors and recreational receptors and the localised nature of the arsenic soil exceedances exposure to human ROCs via soil direct contact is anticipated to be negligible. The concentration distribution in soil throughout the Site, as demonstrated using descriptive statistics, further supports that if a human ROC were present at the Site, it is unlikely that they would come into contact with arsenic soil concentrations that exceed the CCME SQG.

As future land use will require disturbance of in-situ materials, these materials may require management plan to minimize exposure to construction workers. However as stated,

¹ Which defines surface soil to be the uppermost \leq 1.5 m layer.

concentrations of arsenic at the Site are generally below CCME SQGs. It is also expected that any subsurface exposures during construction/utility work would be sub-chronic (< 90 days) in nature (i.e., subsurface work of chronic duration at the Site is considered unlikely). As a result, risks to human ROCs from arsenic soil exposure at the Site under both current as well as future land use are not anticipated. Impacted material at the Site will be managed onsite in accordance with MARLANT SEMS Directive #E2.

Groundwater at the Site is not used for drinking water purposes (including bathing/showering, cooking, gardening, drinking, etc.) and is not anticipated to be used for these purposes in the future; drinking water is supplied by a municipal water distribution system (Halifax Water) and it is understood the proposed LBTF will be connected to municipal services. However, based on the presence of groundwater concentrations that exceed the applicable guidelines/standards for arsenic and iron, groundwater at the Site must not be used as a source of drinking water in the future. Groundwater arsenic and iron concentrations at the Site appear to be withing background regional ranges (NSE, 2015), therefore they were not carried forward as final COPCs for dermal contact.

1.3.2 Ecological Receptor and Exposure Pathway Identification

The primary goal of an ecological risk assessment is to ensure the continued presence of a biologically diverse, functional, self-sustaining, and interdependent community or ecosystem as an essential component of the remediation of contamination at the Site. Protection of ecological receptors at the community-to-population-level is imperative for the continued existence of individual species and the health of ecosystems. Though the primary focus of the current CSM is to assess potential exposure and effects at the community-to-population-level, in some circumstances, such as for species of special concern, protection at the individual level may be required. This section identifies potential ecological ROCs and evaluates potentially operable exposure pathways at the Site. Guidance provided by CCME (2020) was used to identify candidate ROCs at the Site for further consideration in an ERA.

The Site is located within the south-central nova scotia uplands, which is strongly influence by the Atlantic Ocean with warm summers and mild, snowy winters (Webb and Marshall, 1999). The Site is specifically within the coast spruce ecological land classification (NSLF, 2021a, see Attachment 3) but is also occupied by mixed wood forests such as red and white spruce, balsam fir, yellow birch and eastern hemlock. Wildlife includes white-tailed deer, snowshoe hare, porcupine, raccoon, fished, red fox, coyote and beaver. As the Site is beside the Atlantic Ocean, sea birds are common in the area which include double-crested cormorants, great blue heron, osprey, bald eagle and herring gull (NSLF, 2021b). The Site is within a deer and migratory bird zone (NSLF, 2021a, see Attachment 3), and as described in Section 4.10 of the main report, there are no surface water bodies at the Site.

Species at risk in Nova Scotia, and specific to the Halifax region, include the following:

- > Piping plover (Charadrius melodus)
- > Roseate tern (*Sterna dougallii*)
- > Harlequin duck (*Histrionicus histrionicus*)
- > Ipswich sparrow (Passerculus sandwichensis princeps)
- > Wood turtle (*Glyptemys insculpta*)
- > Moose (Alces alces americana)
- > Boreal felt lichen (*Erioderma pedicellatum*)

In accordance with CCME (2020) guidance, the following ecological receptor groups should be considered for inclusion as ROCs in primarily terrestrial environments and thus, have been identified as preliminary ROCs for evaluation in the ERA:

- > Primary producers: i.e., mosses/grasses/shrubs/trees/forbs (including deep-rooting vegetation);
- > Invertebrates: i.e., ground-dwelling and aerial;
- > Mammals: i.e., herbaceous, insectivorous, carnivorous and omnivorous;
- > Aquatic and Terrestrial Birds: i.e., herbivorous, insectivorous, carnivorous and omnivorous;
- > Reptiles: i.e., carnivorous; and
- > Threatened, endangered and/or sensitive species.

Iron was identified as a soil COPC for the protection of terrestrial ecological receptors at the Site, with a maximum concentration of 27,800 mg/kg exceeding the (non-specific) NSE Standard of 11,000 mg/kg. The maximum concentration of iron marginally exceeded the Dillon (2011) recommended background concentration of 25,739 mg/kg which was calculated from a 95% Student's-t UCL. The 90th percentile and 95% UCLM calculated for soil iron concentrations at the Site were 25,420 and 23,103 mg/kg) (95% Student's-t UCL, see Attachment 3), respectively, which indicates that soil concentrations are likely representative of background. As the NSE Standard is not a pathway or receptor specific value and based on the descriptive statistics of the soil data at the Site, no adverse effects to terrestrial ecological receptors from direct soil contact are anticipated and no additional assessment is required.

1.4 Summary of Conceptual Site Model

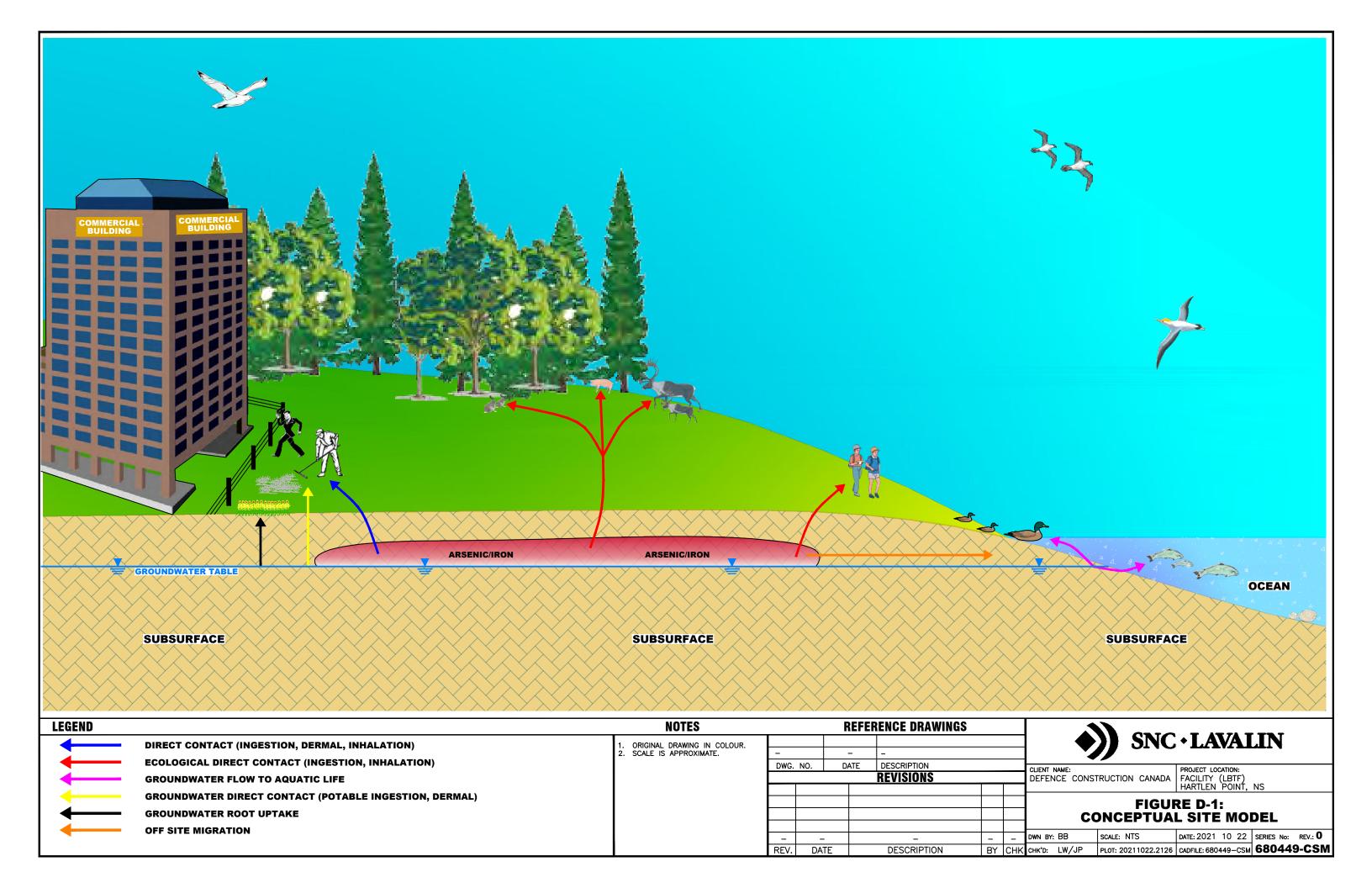
The conceptual model, which provides schematic representation of the COPCs, their sources and release mechanisms, transport pathways, and exposure routes to identified human and ecological receptors, is attached as Figure D-1. Operable exposure pathways were not identified for the Site for human and ecological receptors of concern, as a result no human or ecological receptors and associated exposure pathways were require further quantitative evaluation.

1.5 References

- Canadian Council for Ministers of the Environment (CCME), 2006. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines.
- Canadian Council for Ministers of the Environment (CCME), 2015. A Protocol for Derivation of Groundwater Quality Guidelines at Contaminated Sites. 2015.
- CCME, 2016. Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment, Volume 1 Guidance Manual.
- CCME, 2020. Ecological Risk Assessment Guidance. 2020.
- Dillon Consulting Limited (Dillon), 2011. Review of Environment Canada's Background Soil Database (2004-2009) Version No.1, March 2011. Prepared for Public Works and Government Services Canada.
- Environment Canada and Climate Change (ECCC), 1999. Canadian Soil Quality Guidelines Arsenic. Environmental and Human Health. Scientific Supporting Documentation, prepared by National Guidelines and Standards Office Environment Canada. 1999, p37
- Government of Canada, 2021. Construction of a Land Based Test Facility, Hartlen Point, Canadian Forces Base (CFB) Halifax, Nova Scotia. Available at: https://iaac-aeic.gc.ca/050/evaluations/proj/81264
- Health Canada. 2012. Federal Contaminated Site Risk Assessment in Canada Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA). Version 2.0. Revised 2012. Contaminated Sites Division, Safe Environments Program, Health Canada, Ottawa, Ontario.
- Health Canada, 2021. Federal Contaminated Site Risk Assessment in Canada Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA). Version 3.0. Health Canada, Ottawa, Ontario.
- Helsel, DR and EJ Gilroy, 2012. The Unofficial Users Guide to ProUCL4.0. Kindle Ebooks. Out of Print.
- Nova Scotia Environment (NSE), 2015. Nova Scotia Groundwater Observation Well Network, Prepared August 2015.
- Province of Nova Scotia (NSLF), 2021a. Significant Species and Habitats Database, Provincial Landscape Viewer. Available at: https://nsgi.novascotia.ca/plv/
- NSLF, 2021b. Wildlife and Birds of Nova Scotia, Lands and Forestry. Available at: https://novascotia.ca/natr/wildlife/wns/wns7e.asp
- Stantec Inc. (Stantec), 2020. Final Concept Report, Irving Shipbuilding Inc. Land Based Test Facility. June 3, 2020.
- Webb, KT and IB Marshall, 1999. Ecoregions and Ecodistrict of Nova Scotia, South-Central Nova Scotia Uplands. Prepared for Agriculture and Agri-Food Canada, Environment Canada. Available at: https://sis.agr.gc.ca/cansis/publications/surveys/ns/nsee/nsee_report.pdf

	UCL Stat	istics for Unce	ensored Full Data Sets	
	I			
User Selected Options Date/Time of Computation	ProUCL 5.12021-10-21 1:38	-00 DM		
From File	WorkSheet.xls	5.23 PW		
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
rsenic				
		General S	Statistics	
Tc	otal Number of Observations	25	Number of Distinct Observations	8
			Number of Missing Observations	0
	Minimum	5	Mean	8.84
	Maximum	15	Median	8
	SD	2.41	Std. Error of Mean	0.482
	Coefficient of Variation	0.273	Skewness	1.291
		Normal G	iOF Test	
	Shapiro Wilk Test Statistic	0.853	Shapiro Wilk GOF Test	
5%	Shapiro Wilk Critical Value	0.918	Data Not Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.234	Lilliefors GOF Test	
	5% Lilliefors Critical Value	0.173	Data Not Normal at 5% Significance Level	
	Data No	ot Normal at 59	% Significance Level	
95% No	A prmal UCL	ssuming Norm	nal Distribution 95% UCLs (Adjusted for Skewness)	
95% No		ssuming Norm 9.665	nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	9.766
95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	9.766 9.685
95% No	ormal UCL	9.665	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	
95% No	ormal UCL 95% Student's-t UCL	9.665 Gamma G	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test	
95% No	A-D Test Statistic	9.665 Gamma C 1.009	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test	
95% No	A-D Test Statistic 5% A-D Critical Value	9.665 Gamma G 1.009 0.744	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	9.665 Gamma G 1.009 0.744 0.198	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test	
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	9.665 Gamma G 1.009 0.744 0.198 0.174	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	
95% Nc	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	9.665 Gamma G 1.009 0.744 0.198 0.174 ma Distribute	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level	
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan	9.665 Gamma G 1.009 0.744 0.198 0.174 ma Distribute Gamma S	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) COF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level	9.685
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE)	9.665 Gamma C 1.009 0.744 0.198 0.174 ma Distribute Gamma S 15.84	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) AOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE)	9.685
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE)	9.665 Gamma G 1.009 0.744 0.198 0.174 ma Distribute Gamma S 15.84 0.558	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) AOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE)	9.685
	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE) nu hat (MLE)	9.665 9.665 0.009 0.744 0.198 0.174 0.174 0.174 0.174 0.558 791.9	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	9.685 13.96 0.633 698.2
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE)	9.665 Gamma G 1.009 0.744 0.198 0.174 ma Distribute Gamma S 15.84 0.558	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	9.685 13.96 0.633 698.2 2.366
	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	9.665 9.665 1.009 0.744 0.198 0.174 0.174 0.174 Camma S 15.84 0.558 791.9 8.84	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	9.685 13.96 0.633 698.2 2.366 637.9
	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE) nu hat (MLE)	9.665 9.665 0.009 0.744 0.198 0.174 0.174 0.174 0.174 0.558 791.9	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	9.685 13.96 0.633 698.2 2.366
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	9.665 Gamma C 1.009 0.744 0.198 0.174 ma Distribute Gamma S 15.84 0.558 791.9 8.84 0.0395	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	9.685 9.685 13.96 0.633 698.2 2.366 637.9
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	9.665 Gamma C 1.009 0.744 0.198 0.174 ma Distribute Gamma S 15.84 0.558 791.9 8.84 0.0395	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) AOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	9.685 9.685 13.96 0.633 698.2 2.366 637.9
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) tjusted Level of Significance	9.665 Gamma G 1.009 0.744 0.198 0.174 ma Distribute Gamma S 15.84 0.558 791.9 8.84 0.0395 ssuming Gamma	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution	9.685 13.96 0.633 698.2 2.366 637.9 634
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) tjusted Level of Significance	9.665 Gamma G 1.009 0.744 0.198 0.174 ma Distribute Gamma S 15.84 0.558 791.9 8.84 0.0395 ssuming Gamma 9.676	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution	9.685 13.96 0.633 698.2 2.366 637.9 634
Ac 95% Approximate Gam	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) djusted Level of Significance A: ma UCL (use when n>=50))	9.665 Gamma G 1.009 0.744 0.198 0.174 ma Distribute Gamma S 15.84 0.558 791.9 8.84 0.0395 ssuming Gama 9.676 Lognormal	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value Majusted Chi Square Value 95% Adjusted Gamma UCL (use when n<50) GOF Test	9.685 13.96 0.633 698.2 2.366 637.9 634
Ac 95% Approximate Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gan k hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) Ijusted Level of Significance A Ima UCL (use when n>=50)) Shapiro Wilk Test Statistic	9.665 9.665 1.009 0.744 0.198 0.174 0.198 0.174 Gamma S 15.84 0.558 791.9 8.84 0.0395 ssuming Gam 9.676 Lognormal 0.925	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 30F Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) Nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value Majusted Chi Square Value 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test	9.685 13.96 0.633 698.2 2.366 637.9 634
Ac 95% Approximate Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Garr k hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) djusted Level of Significance A: ma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5 Shapiro Wilk Critical Value	9.665 9.665 1.009 0.744 0.198 0.174 0.198 0.174 Gamma S 15.84 0.558 791.9 8.84 0.0395 ssuming Gam 9.676 Lognormal 0.925 0.918	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level d at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) Nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value Magnet Chi Square Value Magnet Chi Square Value Magnet Chi Square Value Magnet Chi Square Value Data Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level	9.685 13.96 0.633 698.2 2.366 637.9 634

1.609		
	Mean of logged Data	2.147
2.708	SD of logged Data	0.253
umina Loano	rmal Distribution	
		10.18
		11.64
10.02		
etric Distribut	ion Free UCL Statistics	
Discernible D	Distribution at 5% Significance Level	
rametric Dist	ribution Free UCLs	
9.633	95% Jackknife UCL	9.665
9.611	95% Bootstrap-t UCL	9.853
9.915	95% Percentile Bootstrap UCL	9.64
9.76		
10.29	95% Chebyshev(Mean, Sd) UCL	10.94
11.85	99% Chebyshev(Mean, Sd) UCL	13.64
Suggested	UCL to Use	
9.665	or 95% Modified-t UCL	9.685
9.692		
sed upon dat	a size, data distribution, and skewness.	
Its of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).	
/orld data set	ts; for additional insight the user may want to consult a statistician.	
uts H-statistic	based UCLs for historical reasons only.	
	•	
	•	
pute UCL95	for skewed data sets which do not follow a gamma distribution.	
	uming Logno 9.692 10.79 13.32 etric Distribut Discemible I 9.633 9.611 9.915 9.76 10.29 11.85 Suggested 9.665 9.692 6 UCL are presed upon dat of the sim forld data see uts H-statistic nd low) value ed to avoid the sim	uming Lognormal Distribution 9.692 90% Chebyshev (MVUE) UCL 10.79 97.5% Chebyshev (MVUE) UCL 13.32 etric Distribution Free UCL Statistics Discernible Distribution at 5% Significance Level rametric Distribution Free UCLs 9.633 95% Jackknife UCL 9.611 95% Bootstrap-t UCL 9.915 95% Percentile Bootstrap UCL 9.76 10.29 95% Chebyshev(Mean, Sd) UCL 11.85 99% Chebyshev(Mean, Sd) UCL 11.85 99% Chebyshev(Mean, Sd) UCL


	UCL Sta	tistics for Unc	ensored Full Data Sets	
Lieux Colected Ontione				
User Selected Options				
Date/Time of Computation	ProUCL 5.12021-10-21 3:4	7:00 PM		
From File	WorkSheet.xls			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
n				
•				
			Statistics	00
То	otal Number of Observations	25	Number of Distinct Observations	22
			Number of Missing Observations	0
	Minimum		Mean	-
	Maximum	27800	Median	22900
	SD	3831	Std. Error of Mean	766.3
	Coefficient of Variation	0.176	Skewness	-1.102
			GOF Test	
	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5%	6 Shapiro Wilk Critical Value	0.918	Data appear Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.164	Lilliefors GOF Test	
	5% Lilliefors Critical Value	0.173	Data appear Normal at 5% Significance Level	
	Data app	bear Normal at	5% Significance Level	
95% N	ormal UCL	-	nal Distribution 95% UCLs (Adjusted for Skewness)	
95% N		-	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	
95% N	ormal UCL	-	95% UCLs (Adjusted for Skewness)	
95% N	ormal UCL	23103	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	
95% N	ormal UCL	23103 Gamma	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	
95% N	ormal UCL 95% Student's-t UCL	23103 Gamma	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test	
95% N	A-D Test Statistic 5% A-D Critical Value	23103 Gamma 1.081 0.743	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	
95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	23103 Gamma 1.081 0.743 0.179	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test	
95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	23103 Gamma 1.081 0.743 0.179 0.174	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	
95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	23103 Gamma 1 1.081 0.743 0.179 0.174 mma Distribute	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	
95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	23103 Gamma 1.081 0.743 0.179 0.174 mma Distributo Gamma	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level	
95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar	23103 Gamma 1.081 0.743 0.179 0.174 mma Distributo Gamma	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level	23075
95% N	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE)	23103 23103 1.081 0.743 0.179 0.174 mma Distribute Gamma 27.81 783.6	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE)	23075
95% N	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE) nu hat (MLE)	23103 Gamma 1.081 0.743 0.179 0.174 mma Distribute Gamma 27.81 783.6 1390	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	23075 24.5 889.5 1225
95% N	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE)	23103 Gamma 1.081 0.743 0.179 0.174 mma Distributu Gamma 27.81 783.6 1390	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected)	23075 24.5 889.5 1225 4403
	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE) nu hat (MLE)	23103 Gamma 1 1.081 0.743 0.179 0.174 mma Distributu Gamma 27.81 783.6 1390 21792	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	23075 24.5 889.5 1225
	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) djusted Level of Significance	23103 Camma 1.081 0.743 0.179 0.174 mma Distribute Camma 27.81 783.6 1390 21792 0.0395	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	23075 24.5 889.5 1225 4403 1145
	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) djusted Level of Significance	23103 Gamma 1.081 0.743 0.179 0.174 mma Distribute Gamma 27.81 783.6 1390 21792 0.0395 ssuming Gam	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	23075 24.5 889.5 1225 4403 1145 1139
	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) djusted Level of Significance	23103 Gamma 1 1.081 0.743 0.179 0.174 mma Distribute Gamma 27.81 783.6 1390 21792 0.0395 ssuming Gam 23320	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value 95% Adjusted Gamma UCL (use when n<50)	23075 24.5 889.5 1225 4403 1145 1139
	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) djusted Level of Significance	23103 Gamma 1 1.081 0.743 0.179 0.174 mma Distribute Gamma 27.81 783.6 1390 21792 0.0395 ssuming Gam 23320 Lognorma	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value ama Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test	23075 24.5 889.5 1225 4403 1145 1139
Ar 95% Approximate Gan	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar bata Not Gar K hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) djusted Level of Significance	23103 Gamma 1 1.081 0.743 0.179 0.174 mma Distribute Gamma 27.81 783.6 1390 21792 0.0395 ssuming Gam 23320 Lognorma 0.834	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value 95% Adjusted Gamma UCL (use when n<50)	23075 24.5 889.5 1225 4403 1145 1139
Ar 95% Approximate Gan	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) djusted Level of Significance Anna UCL (use when n>=50)) Shapiro Wilk Test Statistic 6 Shapiro Wilk Critical Value	23103 Gamma 1 1.081 0.743 0.179 0.174 mma Distribute Gamma 27.81 783.6 1390 21792 0.0395 xssuming Gam 23320 Lognorma 0.834 0.918	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50)	23075 24.5 889.5 1225 4403 1145 1139
Ar 95% Approximate Gan	A-D Test Statistic A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) djusted Level of Significance Anna UCL (use when n>=50)) Shapiro Wilk Test Statistic 6 Shapiro Wilk Critical Value Lilliefors Test Statistic	23103 Gamma 1 1.081 0.743 0.179 0.174 mma Distribute Gamma 27.81 783.6 1390 21792 0.0395 xsuming Gam 23320 Lognorma 0.834 0.918 0.186	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50)	23075 24.5 889.5 1225 4403 1145 1139
Ar 95% Approximate Gan	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gar k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) djusted Level of Significance Anna UCL (use when n>=50)) Shapiro Wilk Test Statistic 6 Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	23103 Gamma 1 1.081 0.743 0.179 0.174 mma Distribute Gamma 27.81 783.6 1390 21792 0.0395 xsuming Gam 23320 Lognorma 0.834 0.918 0.186 0.173	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level ad at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50)	23075 24.5 889.5 1225 4403 1145 1139

ta 9.269 ta 10.23	Mean of logged Data	9.971
ta 10.23		
	SD of logged Data	0.205
	97.5% Chebyshev (MVUE) UCL	27482
CL 30830		
ametric Distribu	tion Free UCL Statistics	
w a Discernible	Distribution at 5% Significance Level	
nparametric Dis	tribution Free UCLs	
CL 23052	95% Jackknife UCL	23103
CL 23023	95% Bootstrap-t UCL	22924
CL 22925	95% Percentile Bootstrap UCL	22964
CL 22864		
CL 24091	95% Chebyshev(Mean, Sd) UCL	25132
CL 26577	99% Chebyshev(Mean, Sd) UCL	29416
Suggested		
95% UCL are p	rovided to help the user to select the most appropriate 95% UCL.	
based upon da	ta size, data distribution, and skewness.	
results of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).	
al World data se	ets; for additional insight the user may want to consult a statistician.	
onfidence limits	(e.g., Chen, Johnson, Lognormal, and Gamma) may not be	
	CL 23530 CL 25778 CL 30830 rrametric Distribution onparametric Distribution CL 23052 CL 23052 CL 23023 CL 22925 CL 22864 CL 24091 CL 26577 Suggested CL 23103 195% UCL are p e based upon data seconfidence limits	CL 25778 97.5% Chebyshev (MVUE) UCL CL 30830 arametric Distribution Free UCL Statistics bw a Discernible Distribution at 5% Significance Level cl 23052 CL 23023 95% Bootstrap-t UCL CL 22925 95% Percentile Bootstrap UCL CL 22864 CL 24091 95% Chebyshev(Mean, Sd) UCL CL 26577 Suggested UCL to Use

Appendix E

Photos

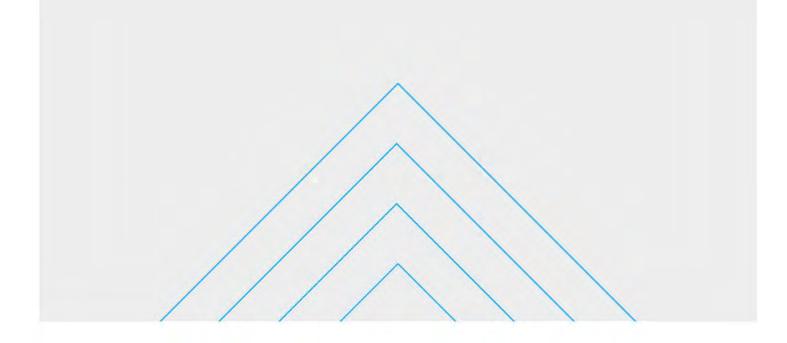


Photo 1. S5551-21MW01

Photo 2. S5551-21MW02

Photo 3. S5551-21MW03



Photo 4. S5551-21MW04

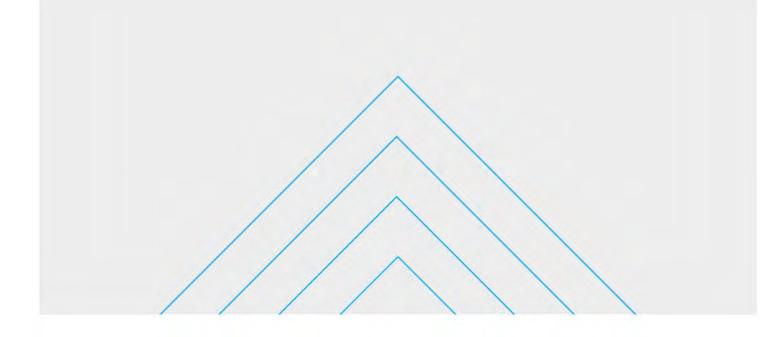

Photo 5. S5551-21MW05

Photo 6. S5551-21MW06

Appendix F

Laboratory Certificates

CLIENT NAME: SNC Lavalin Inc. 5657 SPRING GARDEN RD, SUITE 200 HALIFAX , NS B3J3R4 (902) 492-4544 ATTENTION TO: Alan Parker PROJECT: 680449 AGAT WORK ORDER: 21X723447 SOIL ANALYSIS REVIEWED BY: Marta Manka, Data Reporter TRACE ORGANICS REVIEWED BY: Amy Hunter, Trace Organics Supervisor, B.Sc. ULTRA TRACE REVIEWED BY: Olivier Lachance, Method Development Supervisor DATE REPORTED: May 25, 2021 PAGES (INCLUDING COVER): 26 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

ATTENTION TO: Alan Parker

SAMPLED BY:

AGAT WORK ORDER: 21X723447 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

			A۱	ailable Met	als in Soil					
DATE RECEIVED: 2021-03-19							l	DATE REPORT	ED: 2021-05-25	
			S5551-21MW03-	S5551-21MW03-	S5551-21MW05-	S5551-21MW05-	S5551-21BH05-	S5551-21BH05-	S5551-21BH05-	S5551-21BH03-
		SAMPLE DESCRIPTION:	21SS-01	21SS-06	21SS-01	21SS-07	01	07	08	01
		SAMPLE TYPE:	Soil	Soil						
		DATE SAMPLED:	2021-03-15	2021-03-15	2021-03-15	2021-03-15	2021-03-16	2021-03-16	2021-03-16	2021-03-16
Parameter	Unit	G/S RDL	2234378	2234384	2234389	2234395	2234398	2234407	2234409	2234411
Aluminum	mg/kg	10	10700	14800	11500	12700	14000	14900	12900	6300
Antimony	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	mg/kg	1	8	7	8	7	10	14	14	5
Barium	mg/kg	5	11	70	11	71	18	92	80	11
Beryllium	mg/kg	2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	mg/kg	2	4	7	3	6	3	4	4	<2
Cadmium	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/kg	2	12	20	14	19	19	18	18	8
Cobalt	mg/kg	1	4	12	5	11	7	11	10	4
Copper	mg/kg	2	6	18	5	18	8	18	17	4
Iron	mg/kg	50	20600	23300	22900	20700	27700	22800	19900	10600
Lead	mg/kg	0.5	8.6	14.7	6.1	6.4	8.9	7.7	7.2	5.1
Lithium	mg/kg	5	19	36	24	31	31	36	32	13
Manganese	mg/kg	2	150	657	210	627	243	615	522	183
Molybdenum	mg/kg	2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	mg/kg	2	10	24	19	23	16	22	20	7
Selenium	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	mg/kg	5	<5	21	<5	20	<5	16	15	<5
Thallium	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	mg/kg	2	2	4	3	3	3	3	3	<2
Uranium	mg/kg	0.1	0.3	0.4	0.3	0.4	0.4	1.2	0.8	0.3
Vanadium	mg/kg	2	29	21	24	20	26	19	19	16
Zinc	mg/kg	5	23	57	28	55	41	53	50	18

Certified By:

Marta Manta

AGAT WORK ORDER: 21X723447

PROJECT: 680449

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

			A۱	ailable Met	als in Soil					
DATE RECEIVED: 2021-03-19							[DATE REPORTI	ED: 2021-05-25	
		SAMPLE DESCRIPTION		S5551-21MW01- 21SS-01	· \$5551-21MW01- 21\$\$-08	- S5551-21BH02- 01	S5551-21BH02- 08	S5551-21MW04- 21SS-01	S5551-21MW04- 21SS-08	S5551-21BH06- 01
		SAMPLE DESCRIPTION SAMPLE TYPE		Soil	2133-06 Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAMPLED		2021-03-17	2021-03-17	2021-03-17	2021-03-17	2021-03-17	2021-03-17	2021-03-18
Parameter	Unit	G/S RDL	2234418	2234419	2234430	2234431	2234439	2234441	2234509	2021-03-18
Aluminum	mg/kg	10	14900	12700	13900	14500	14100	12600	15300	10800
Antimony	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	mg/kg	1	8	6	7	10	8	9	9	7
Barium	mg/kg	5	76	20	80	50	75	23	79	50
Beryllium	mg/kg	2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	mg/kg	2	7	3	7	5	7	3	7	4
Cadmium	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/kg	2	20	16	19	21	22	15	26	16
Cobalt	mg/kg	1	12	6	12	12	12	12	12	7
Copper	mg/kg	2	19	11	17	22	20	14	42	13
Iron	mg/kg	50	23100	17500	21900	23600	24800	19600	25300	16300
Lead	mg/kg	0.5	7.2	6.2	7.5	7.6	7.9	8.9	7.4	5.3
Lithium	mg/kg	5	36	27	33	30	37	24	37	25
Manganese	mg/kg	2	620	240	611	555	707	668	760	410
Molybdenum	mg/kg	2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	mg/kg	2	28	13	24	23	26	15	35	19
Selenium	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	mg/kg	5	23	<5	22	8	24	<5	20	15
Thallium	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	mg/kg	2	3	3	3	2	3	2	3	3
Uranium	mg/kg	0.1	0.5	0.4	0.4	0.5	0.5	0.3	0.4	0.5
Vanadium	mg/kg	2	23	18	21	24	23	17	23	18
Zinc	mg/kg	5	66	33	55	54	58	35	60	39

ATTENTION TO: Alan Parker

SAMPLED BY:

Certified By:

Marta Manta

ATTENTION TO: Alan Parker

SAMPLED BY:

AGAT WORK ORDER: 21X723447

PROJECT: 680449

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

SAMPLING SITE.						SAMFLED DT.
				A۱	ailable Meta	als in Soil
DATE RECEIVED: 2021-03-19						DATE REPORTED: 2021-05-25
				S5551-21BH06-	S5551-21BH06-	
	:	SAMPLE DESCF		08	09	
		SAMPL	E TYPE:	Soil	Soil	
		DATE SA	MPLED:	2021-03-17	2021-03-17	
Parameter	Unit	G/S	RDL	2234670	2234684	
Aluminum	mg/kg		10	11700	13600	
Antimony	mg/kg		1	<1	<1	
Arsenic	mg/kg		1	14	15	
Barium	mg/kg		5	65	74	
Beryllium	mg/kg		2	<2	<2	
Boron	mg/kg		2	4	4	
Cadmium	mg/kg		0.3	<0.3	<0.3	
Chromium	mg/kg		2	20	25	
Cobalt	mg/kg		1	11	11	
Copper	mg/kg		2	15	18	
Iron	mg/kg		50	19400	21300	
Lead	mg/kg		0.5	8.4	9.6	
Lithium	mg/kg		5	30	35	
Manganese	mg/kg		2	524	573	
Molybdenum	mg/kg		2	<2	<2	
Nickel	mg/kg		2	19	22	
Selenium	mg/kg		1	<1	<1	
Silver	mg/kg		0.5	<0.5	<0.5	
Strontium	mg/kg		5	13	17	
Thallium	mg/kg		0.1	<0.1	<0.1	
Tin	mg/kg		2	3	3	
Uranium	mg/kg		0.1	0.6	0.7	
Vanadium	mg/kg		2	16	20	
Zinc	mg/kg		5	45	51	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2234378-2234684 Results are based on the dry weight of the sample.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

Marta Manta

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

AGAT WORK ORDER: 21X723447 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

CCME Petroleum Hydrocarbon F1 - F4 in Soil - Field Preserved

DATE RECEIVED: 2021-03-19

			S5551-21MW03	- S5551-21MW05-	S5551-21BH05-	S5551-21BH03-	S5551-21MW01-	S5551-21BH02-	S5551-21MW04-	S5551-21BH06
		SAMPLE DESCRIPTIO	N: 21SS-06	21SS-04	07	03	21SS-02	05	21SS-05	06
		SAMPLE TYP	E: Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAMPLE	D: 2021-03-15	2021-03-15	2021-03-16	2021-03-16	2021-03-17	2021-03-17	2021-03-17	2021-03-18
Parameter	Unit	G/S RDL	2234384	2234392	2234407	2234414	2234420	2234435	2234446	2234588
Benzene	µg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	µg/g	0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Ethylbenzene	µg/g	0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Xylenes (Total)	µg/g	0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
C6 - C10 (F1)	µg/g	10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 (F1 minus BTEX)	µg/g	10	<10	<10	<10	<10	<10	<10	<10	<10
>C10 - C16 (F2)	µg/g	10	<10	<10	<10	<10	<10	<10	<10	<10
>C16 - C34 (F3)	µg/g	50	<50	<50	<50	<50	<50	<50	<50	<50
>C34 - C50 (F4)	µg/g	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons (F4G)	µg/g	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Surrogate	Unit	Acceptable Limits	5							
o-terphenyl	%	50-140	103	106	106	96	102	106	102	103

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2234384-2234588 Results are based on sample dry weight.

Xylene(Total)and C6-C10(F1 minus BTEX) are calculated parameters. The calculated parameter is non-accredited. The component parameters of the calculation are accredited.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Analysis performed at AGAT Halifax (unless marked by *)

my

DATE REPORTED: 2021-05-25

AGAT WORK ORDER: 21X723447 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

				Moist	ure					
DATE RECEIVED: 2021-03-19								DATE REPORT	ED: 2021-05-25	
			S5551-21MW0	03- S5551-21MW03-	- S5551-21MW05-	- S5551-21MW05-	S5551-21MW05-	S5551-21BH05-	S5551-21BH05-	S5551-21BH05-
		SAMPLE DESCRIPT	ON: 21SS-01	21SS-06	21SS-01	21SS-04	21SS-07	01	07	08
		SAMPLE T	'PE: Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAMPI	ED: 2021-03-15	2021-03-15	2021-03-15	2021-03-15	2021-03-15	2021-03-16	2021-03-16	2021-03-16
Parameter	Unit	G/S RD	L 2234378	2234384	2234389	2234392	2234395	2234398	2234407	2234409
% Moisture	%	0.	5 31	11	16	12	12	21	9.5	9.6
			S5551-21BH0	03- S5551-21BH03-	S5551-21BH03-	S5551-21MW01-	S5551-21MW01-	S5551-21MW01-	S5551-21BH02-	S5551-21BH02-
		SAMPLE DESCRIPT	ON: 01	03	07	21SS-01	21SS-02	21SS-08	01	05
		SAMPLE T	'PE: Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAMPI	ED: 2021-03-16	2021-03-16	2021-03-16	2021-03-17	2021-03-17	2021-03-17	2021-03-17	2021-03-17
Parameter	Unit	G/S RD	L 2234411	2234414	2234418	2234419	2234420	2234430	2234431	2234435
% Moisture	%	0.	5 16	13	11	14	12	11	25	11
			S5551-21BH0	2- S5551-21MW04	- S5551-21MW04	- S5551-21MW04-	S5551-21BH06-	S5551-21BH06-	S5551-21BH06-	S5551-21BH06-
		SAMPLE DESCRIPT	ON: 08	21SS-01	21SS-05	21SS-08	01	06	08	09
		SAMPLE T	'PE: Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAMPI	ED: 2021-03-17	2021-03-17	2021-03-17	2021-03-17	2021-03-18	2021-03-18	2021-03-17	2021-03-17
Parameter	Unit	G/S RD	L 2234439	2234441	2234446	2234509	2234583	2234588	2234670	2234684
% Moisture	%	0.	5 12	21	11	9.4	16	9.3	9.8	13

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Halifax (unless marked by *)

my Huj

AGAT WORK ORDER: 21X723447 PROJECT: 680449

Polycyclic Aromatic Hydrocarbons in Soil

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

		I	Ofycyclic /		Julocarbon	5 11 501				
DATE RECEIVED: 2021-03-19							[DATE REPORTE	ED: 2021-05-25	
			S5551-21MW03-	- S5551-21MW03-	S5551-21MW05	- S5551-21MW05-	S5551-21BH05-	S5551-21BH05-	S5551-21BH05-	S5551-21BH03
		SAMPLE DESCRIPTION:	21SS-01	21SS-06	21SS-01	21SS-07	01	07	08	01
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
1		DATE SAMPLED:	2021-03-15	2021-03-15	2021-03-15	2021-03-15	2021-03-16	2021-03-16	2021-03-16	2021-03-16
Parameter	Unit	G/S RDL	2234378	2234384	2234389	2234395	2234398	2234407	2234409	2234411
1-Methylnaphthalene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671
Acenaphthylene	mg/kg	0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	<0.004	< 0.004
Acridine	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(j+k)fluoranthene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(e)pyrene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(ghi)perylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h)anthracene	mg/kg	0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Fluoranthene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perylene	mg/kg	0.05	<0.01	0.05	<0.01	<0.01	<0.01	0.02	0.04	<0.01
Phenanthrene	mg/kg	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Quinoline	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate	Unit	Acceptable Limits								
Naphthalene-d8	%	50-140	72	77	77	77	74	82	76	81
Terphenyl-d14	%	50-140	74	88	86	87	80	92	86	84
Pyrene-d10 (%)	%	50-140	68	78	76	77	69	83	75	75

any Huj

AGAT WORK ORDER: 21X723447 PROJECT: 680449

Polycyclic Aromatic Hydrocarbons in Soil

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

		1	Orycyclic r	Nonatio Hy	ulucaluuli	3 11 001				
DATE RECEIVED: 2021-03-19)							DATE REPORT	ED: 2021-05-25	
			S5551-21BH03-	S5551-21MW01-	S5551-21MW01-	S5551-21BH02-	S5551-21BH02-	S5551-21MW04-	S5551-21MW04-	S5551-21BH06
	S	AMPLE DESCRIPTION:	07	21SS-01	21SS-08	01	08	21SS-01	21SS-08	01
		SAMPLE TYPE:	Soil	Soil						
		DATE SAMPLED:	2021-03-16	2021-03-17	2021-03-17	2021-03-17	2021-03-17	2021-03-17	2021-03-17	2021-03-18
Parameter	Unit	G/S RDL	2234418	2234419	2234430	2234431	2234439	2234441	2234509	2234583
1-Methylnaphthalene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671
Acenaphthylene	mg/kg	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Acridine	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(j+k)fluoranthene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(e)pyrene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(ghi)perylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h)anthracene	mg/kg	0.006	< 0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Fluoranthene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perylene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Quinoline	mg/kg	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate	Unit	Acceptable Limits								
Naphthalene-d8	%	50-140	80	78	78	78	75	77	77	80
Terphenyl-d14	%	50-140	87	84	85	87	82	86	88	91
Pyrene-d10 (%)	%	50-140	75	73	74	74	73	76	76	78

my Huj

Certified By:

AGAT WORK ORDER: 21X723447 PROJECT: 680449

Polycyclic Aromatic Hydrocarbons in Soil

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

DATE RECEIVED: 2021-03-19 DATE REPORTED: 2021-05-25 S5551-21BH06- S5551-21BH06-SAMPLE DESCRIPTION: 08 09 SAMPLE TYPE: Soil Soil DATE SAMPLED: 2021-03-17 2021-03-17 2234670 2234684 Parameter Unit G/S RDL 1-Methylnaphthalene 0.05 < 0.01 < 0.01 mg/kg 2-Methylnaphthalene 0.01 <0.01 < 0.01 mg/kg Acenaphthene mg/kg 0.00671 < 0.00671 < 0.00671 Acenaphthylene mg/kg 0.004 < 0.004 < 0.004 Acridine 0.05 < 0.01 < 0.01 mg/kg Anthracene mg/kg 0.03 < 0.01 < 0.01 Benzo(a)anthracene 0.01 < 0.01 < 0.01 mg/kg Benzo(a)pyrene mg/kg 0.01 < 0.01 < 0.01 0.05 < 0.01 < 0.01 Benzo(b)fluoranthene mg/kg Benzo(j+k)fluoranthene 0.05 < 0.01 mg/kg < 0.01 Benzo(e)pyrene mg/kg 0.05 < 0.01 < 0.01 Benzo(ghi)perylene 0.01 < 0.01 < 0.01 mg/kg Chrysene mg/kg 0.01 < 0.01 < 0.01 Dibenzo(a,h)anthracene mg/kg 0.006 <0.006 < 0.006 Fluoranthene mg/kg 0.05 < 0.01 < 0.01 Fluorene mg/kg 0.01 < 0.01 < 0.01 Indeno(1,2,3)pyrene mg/kg 0.01 < 0.01 < 0.01 Naphthalene 0.01 < 0.01 < 0.01 mg/kg 0.05 0.06 0.03 Perylene mg/kg Phenanthrene 0.03 < 0.01 < 0.01 mg/kg Pyrene mg/kg 0.05 < 0.01 < 0.01 Quinoline mg/kg 0.05 < 0.01 < 0.01 Surrogate Unit Acceptable Limits Naphthalene-d8 % 50-140 75 82 Terphenyl-d14 50-140 90 % 89 % Pyrene-d10 (%) 50-140 78 79

my Huj

AGAT WORK ORDER: 21X723447 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY: Polycyclic Aromatic Hydrocarbons in Soil

DATE RECEIVED: 2021-03-19

 Comments:
 RDL - Reported Detection Limit;
 G / S - Guideline / Standard

 2234378-2234684
 Results are based on the dry weight of the soil.

Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Benzo(j+k)fluoranthene is not an accredited parameter.

Analysis performed at AGAT Halifax (unless marked by *)

any Huj

DATE REPORTED: 2021-05-25

AGAT WORK ORDER: 21X723447 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Volatile Organic Compounds in Soil - Field Preserved DATE RECEIVED: 2021-03-19 DATE REPORTED: 2021-05-25 S5551-21MW03- S5551-21MW05- S5551-21BH05-S5551-21BH03- S5551-21MW01-S5551-21BH02- S5551-21MW04- S5551-21BH06-SAMPLE DESCRIPTION: 21SS-06 21SS-04 07 03 21SS-05 06 21SS-02 05 SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Soil Soil DATE SAMPLED: 2021-03-15 2021-03-15 2021-03-16 2021-03-16 2021-03-17 2021-03-17 2021-03-17 2021-03-18 G/S 2234384 2234407 2234588 Parameter Unit RDL 2234392 2234414 2234420 2234435 2234446 Chloromethane 100 <100 <100 <100 <100 <100 <100 <100 <100 ug/kg Vinyl Chloride 20 <20 <20 <20 <20 <20 <20 <20 <20 ug/kg Bromomethane 50 <50 <50 <50 <50 <50 <50 <50 <50 ug/kg Chloroethane ug/kg 100 <100 <100 <100 <100 <100 <100 <100 <100 Trichlorofluoromethane (FREON 11) 100 <100 <100 <100 <100 <100 <100 <100 <100 ug/kg <500 <500 Acetone ug/kg 500 <500 <500 <500 <500 <500 <500 50 1,1-Dichloroethylene ug/kg <50 <50 <50 <50 <50 <50 <50 <50 Methylene Chloride 100 <100 <100 <100 <100 <100 <100 <100 ug/kg <100 (Dichloromethane) 80 <80 <80 <80 <80 <80 <80 <80 trans-1,2-Dichloroethylene ug/kg <80 100 <100 <100 <100 1,1-Dichloroethane ug/kg <100 <100 <100 <100 <100 100 cis-1,2-Dichloroethylene ug/kg <100 <100 <100 <100 <100 <100 <100 <100 Chloroform ug/kg 50 <50 <50 <50 <50 <50 <50 <50 <50 1.2-Dichloroethane ug/kg 100 <100 <100 <100 <100 <100 <100 <100 <100 30 <30 1,1,1-Trichloroethane ug/kg <30 <30 <30 <30 <30 <30 <30 Carbon Tetrachloride ug/kg 50 <50 <50 <50 <50 <50 <50 <50 <50 Benzene 6.8 <6.8 <6.8 <6.8 <6.8 <6.8 <6.8 <6.8 <6.8 ug/kg 1,2-Dichloropropane 50 <50 <50 <50 <50 <50 <50 ug/kg <50 <50 Trichloroethylene ug/kg 10 <10 <10 <10 <10 <10 <10 <10 <10 100 <100 <100 <100 <100 <100 <100 <100 <100 Bromodichloromethane ug/kg 100 <100 <100 <100 <100 cis-1,3-Dichloropropene <100 <100 <100 <100 ug/kg trans-1,3-Dichloropropene ug/kg 100 <100 <100 <100 <100 <100 <100 <100 <100 30 <30 <30 <30 <30 1,1,2-Trichloroethane ug/kg <30 <30 <30 <30 Toluene ug/kg 80 <80 <80 <80 <80 <80 <80 <80 <80 2-Hexanone ug/kg 500 <500 <500 <500 <500 <500 <500 <500 <500 Dibromochloromethane 100 <100 <100 <100 <100 <100 <100 <100 <100 ug/kg 1.2-Dibromoethane ug/kg 50 <50 <50 <50 <50 <50 <50 <50 <50 <100 <100 Tetrachloroethylene ug/kg 100 <100 <100 <100 <100 <100 <100 1.1.1.2-Tetrachloroethane 100 <100 <100 <100 <100 <100 <100 <100 <100 µg/kg

Certified By:

any Huj

AGAT WORK ORDER: 21X723447 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker SAMPLED BY:

Volatile Organic Compounds in Soil - Field Preserved

DATE RECEIVED: 2021-03-19							[DATE REPORT	ED: 2021-05-25	
			S5551-21MW03-	S5551-21MW05-	S5551-21BH05-	S5551-21BH03-	S5551-21MW01-	S5551-21BH02-	S5551-21MW04-	S5551-21BH06-
		SAMPLE DESCRIPTION:	21SS-06	21SS-04	07	03	21SS-02	05	21SS-05	06
		SAMPLE TYPE:	Soil	Soil						
		DATE SAMPLED:	2021-03-15	2021-03-15	2021-03-16	2021-03-16	2021-03-17	2021-03-17	2021-03-17	2021-03-18
Parameter	Unit	G/S RDL	2234384	2234392	2234407	2234414	2234420	2234435	2234446	2234588
Chlorobenzene	ug/kg	50	<50	<50	<50	<50	<50	<50	<50	<50
Ethylbenzene	ug/kg	18	<18	<18	<18	<18	<18	<18	<18	<18
m,p-Xylene	ug/kg	100	<100	<100	<100	<100	<100	<100	<100	<100
Bromoform	ug/kg	100	<100	<100	<100	<100	<100	<100	<100	<100
Styrene	ug/kg	100	<100	<100	<100	<100	<100	<100	<100	<100
1,1,2,2-Tetrachloroethane	ug/kg	50	<50	<50	<50	<50	<50	<50	<50	<50
o-Xylene	ug/kg	100	<100	<100	<100	<100	<100	<100	<100	<100
1,3-Dichlorobenzene	ug/kg	50	<50	<50	<50	<50	<50	<50	<50	<50
1,4-Dichlorobenzene	ug/kg	50	<50	<50	<50	<50	<50	<50	<50	<50
1,2-Dichlorobenzene	ug/kg	50	<50	<50	<50	<50	<50	<50	<50	<50
Surrogate	Unit	Acceptable Limits								
Toluene-d8	%	60-140	97	98	97	97	98	98	97	98
4-Bromofluorobenzene	%	60-140	91	94	92	92	90	91	92	91

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2234384-2234588 Results are based on the dry weight of the soil.

Analysis performed at AGAT Halifax (unless marked by *)

my Huj

Certified By:

Page 12 of 26

AGAT WORK ORDER: 21X723447 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

				i onnuo		npoundo (o		
DATE RECEIVED: 2021-03-19								DATE REPORTED: 2021-05-25
				S5551-21MW05-	S5551-21BH05-	S5551-21BH03-	S5551-21BH03-	
		SAMPLE DESC	RIPTION:	21SS-01	01	01	07	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	2021-03-15	2021-03-16	2021-03-16	2021-03-16	
Parameter	Unit	G/S	RDL	2234389	2234398	2234411	2234418	
Perfluorobutanoic Acid PFBA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluoropentanoic Acid PFPeA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorohexanoic Acid PFHxA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluoroheptanoic Acid PFHpA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorooctanoic Acid PFOA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorononanoic Acid PFNA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorodecanoic Acid PFDA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluoroundecanoic Acid PFUnA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorododecanoic Acid PFDoA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorotridecanoic Acid PFTrDA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorotetradecanoic Acid PFTeDA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorobutanesulfonic Acid PFBS	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorohexasulfonic Acid PFHxS	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluoroheptanesulfonate PFHpS	ug/Kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorooctasulfonic Acid PFOS	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorooctane sulfonamide PFOSA	ug/Kg		1.0	<1.0	<1.0	<1.0	<1.0	
Perfluorodecanesulfonic Acid PFDS	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
N-Methylperfluorosulfonamideacetic N-MeFOSAA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	

Perfluorinated Compounds (soil)

Certified By:

Orvier Lachance Quines

AGAT WORK ORDER: 21X723447 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

DATE RECEIVED: 2021-03-19							DATE REPORTED: 2021-05-25
			S5551-21MW05-	S5551-21BH05-	S5551-21BH03-	S5551-21BH03-	
		SAMPLE DESCRIPTION:	21SS-01	01	01	07	
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	
		DATE SAMPLED:	2021-03-15	2021-03-16	2021-03-16	2021-03-16	
Surrogate	Unit	Acceptable Limits	2234389	2234398	2234411	2234418	
Perfluorobutanoic Acid-13C4	%	30-140	72	49	64	57	
Perfluoropentanoic Acid-13C5	%	30-140	71	46	66	55	
Perfluorohexanoic Acid-13C5	%	30-140	71	45	65	59	
Perfluoroheptanoic Acid-13C4	%	30-140	70	49	62	57	
Perfluorooctanoic Acid-13C8	%	30-140	67	43	63	58	
Perfluorononanoic Acid-13C9	%	30-140	55	35	49	48	
Perfluorodecanoic Acid-13C6	%	30-140	71	48	65	62	
Perfluoroundecanoic Acid-13C7	%	30-140	87	47	84	78	
Perfluorododecanoic Acid-13C2	%	30-140	106	62	106	72	
Perfluorotetradecanoic Acid-13C2	%	30-140	31	31	62	46	
Perfluorobutanesulfonic Acid-13C3	%	30-140	83	57	65	68	
Perfluorohexasulfonic Acid-13C3	%	30-140	82	50	66	73	
Perfluorooctasulfonic Acid-13C8	%	30-140	65	39	50	59	
Perfluorooctane sulfonamide -13C8	%	30-140	31	15	37	24	
I-Ethylperfluorosulfonamideacetic- 05	%	30-140	46	62	102	73	

Porfluoringtod Compounds (soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2234398 Surrogate recovery percentages are compliant for more than 90% of the compounds, the quality criteria is met. 2234418 Surrogate recovery percentages are compliant for more than 90% of the compounds, the quality criteria is met. Analysis performed at AGAT Montréal (unless marked by *)

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723447

ATTENTION TO: Alan Parker

SAMPLED BY:

				Soi	l Ana	alysis	6								
RPT Date: May 25, 2021			C	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	eptable mits
		ia					value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
Available Metals in Soil															
Aluminum	2245056		9200	9230	0.3%	< 10	112%	80%	120%	119%	80%	120%	101%	70%	130%
Antimony	2245056		<1	<1	NA	< 1	102%	80%	120%	109%	80%	120%	NA	70%	130%
Arsenic	2245056		16	17	7.5%	< 1	100%	80%	120%	102%	80%	120%	NA	70%	130%
Barium	2245056		11	11	NA	< 5	101%	80%	120%	106%	80%	120%	65%	70%	130%
Beryllium	2245056		<2	<2	NA	< 2	112%	80%	120%	117%	80%	120%	74%	70%	130%
Boron	2245056		<2	<2	NA	< 2	113%	80%	120%	122%	80%	120%	70%	70%	130%
Cadmium	2245056		<0.3	<0.3	NA	< 0.3	102%	80%	120%	101%	80%	120%	NA	70%	130%
Chromium	2245056		9	11	NA	< 2	99%	80%	120%	102%	80%	120%	83%	70%	130%
Cobalt	2245056		2	3	NA	< 1	101%	80%	120%	103%	80%	120%	70%	70%	130%
Copper	2245056		10	11	12.2%	< 2	101%	80%	120%	103%	80%	120%	70%	70%	130%
Iron	2245056		10100	11800	15.5%	< 50	101%	80%	120%	107%	80%	120%	87%	70%	130%
Lead	2245056		27.5	29.0	5.2%	< 0.5	101%	80%	120%	106%	80%	120%	75%	70%	130%
Lithium	2245056		11	13	NA	< 5	117%	70%	130%	120%	70%	130%	107%	70%	130%
Manganese	2245056		110	128	15.9%	< 2	100%	80%	120%	104%	80%	120%	NA	70%	130%
Molybdenum	2245056		<2	<2	NA	< 2	96%	80%	120%	98%	80%	120%	NA	70%	130%
Nickel	2245056		10	11	8.3%	< 2	100%	80%	120%	106%	80%	120%	72%	70%	130%
Selenium	2245056		<1	<1	NA	< 1	104%	80%	120%	99%	80%	120%	NA	70%	130%
Silver	2245056		<0.5	<0.5	NA	< 0.5	99%	80%	120%	102%	80%	120%	NA	70%	130%
Strontium	2245056		<5	<5	NA	< 5	95%	80%	120%	95%	80%	120%	NA	70%	130%
Thallium	2245056		<0.1	<0.1	NA	< 0.1	102%	80%	120%	105%	80%	120%	NA	70%	130%
Tin	2245056		<2	2	NA	< 2	100%	80%	120%	105%	80%	120%	NA	70%	130%
Uranium	2245056		0.3	0.3	NA	< 0.1	101%	80%	120%	104%	80%	120%	NA	70%	130%
Vanadium	2245056		25	28	11.7%	< 2	99%	80%	120%	99%	80%	120%	82%	70%	130%
Zinc	2245056		46	51	11.7%	< 5	100%	80%	120%	102%	80%	120%	70%	70%	130%

Comments: Blank spike: Less than 10% of elements not within acceptance limits. Matrix spike: Less than 10% of elements not within acceptance limits.

Certified By:

Marta Manta

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723447

ATTENTION TO: Alan Parker

SAMPLED BY:

Trace Organics Analysis

			inac		Juin		ury 5	10							
RPT Date: May 25, 2021			C	DUPLICATE			REFERE		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		eptable nits
							value	Lower	Upper		Lower	Upper		Lower	Upper
Polycyclic Aromatic Hydrocarb	ons in Soil														
1-Methylnaphthalene	1	2234378	<0.01	<0.01	0	< 0.05	112%	50%	140%	93%	50%	140%	90%	50%	140%
2-Methylnaphthalene	1	2234378	<0.01	<0.01	0	< 0.01	109%	50%	140%	84%	50%	140%	88%	50%	140%
Acenaphthene	1	2234378	<0.00671	<0.00671	0	< 0.00671	1 117%	50%	140%	91%	50%	140%	91%	50%	140%
Acenaphthylene	1	2234378	<0.004	<0.004	0	< 0.004	93%	50%	140%	70%	50%	140%	85%	50%	140%
Acridine	1	2234378	<0.01	<0.01	0	< 0.05	83%	50%	140%	76%	50%	140%	69%	50%	140%
Anthracene	1	2234378	<0.01	<0.01	0	< 0.03	78%	50%	140%	72%	50%	140%	78%	50%	140%
Benzo(a)anthracene	1	2234378	<0.01	<0.01	0	< 0.01	79%	50%	140%	61%	50%	140%	89%	50%	140%
Benzo(a)pyrene	1	2234378	<0.01	<0.01	0	< 0.01	80%	50%	140%	65%	50%	140%	87%	50%	140%
Benzo(b)fluoranthene	1	2234378	<0.01	<0.01	0	< 0.05	108%	50%	140%	78%	50%	140%	63%	50%	140%
Benzo(j+k)fluoranthene	1	2234378	<0.01	<0.01	0	< 0.05	100%	50%	140%	69%	50%	140%	60%	50%	140%
Benzo(e)pyrene	1	2234378	<0.01	<0.01	0	< 0.05	111%	50%	140%	90%	50%	140%	82%	50%	140%
Benzo(ghi)perylene	1	2234378	<0.01	<0.01	0	< 0.01	69%	50%	140%	59%	50%	140%	82%	50%	140%
Chrysene	1	2234378	<0.01	<0.01	0	< 0.01	114%	50%	140%	89%	50%	140%	85%	50%	140%
Dibenzo(a,h)anthracene	1	2234378	<0.006	<0.006	0	< 0.006	62%	50%	140%	57%	50%	140%	85%	50%	140%
Fluoranthene	1	2234378	<0.01	<0.01	0	< 0.05	95%	50%	140%	77%	50%	140%	83%	50%	140%
Fluorene	1	2234378	<0.01	<0.01	0	< 0.01	103%	50%	140%	85%	50%	140%	95%	50%	140%
Indeno(1,2,3)pyrene	1	2234378	<0.01	<0.01	0	< 0.01	86%	50%	140%	80%	50%	140%	80%	50%	140%
Naphthalene	1	2234378	<0.01	<0.01	0	< 0.01	114%	50%	140%	87%	50%	140%	84%	50%	140%
Perylene	1	2234378	<0.01	<0.01	0	< 0.05	103%	50%	140%	81%	50%	140%	79%	50%	140%
Phenanthrene	1	2234378	<0.01	<0.01	0	< 0.03	108%	50%	140%	84%	50%	140%	87%	50%	140%
Pyrene	1	2234378	<0.01	<0.01	0	< 0.05	108%	50%	140%	83%	50%	140%	82%	50%	140%
Quinoline	1	2234378	<0.01	<0.01	0	< 0.05	74%	50%	140%	86%	50%	140%	52%	50%	140%
Naphthalene-d8	1	2234378	72	<0	0	<		50%	140%		50%	140%		50%	140%
Terphenyl-d14	1	2234378	74	<0	0	< 1									
Pyrene-d10 (%)	1	2234378	68	<0	0	< 1		50%	140%		50%	140%		50%	140%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

CCME Petroleum Hydrocarbon F1 - F4 in Soil - Field Preserved

· · · · · · , · · · · · ·															
Benzene	1	2234713	< 0.02	< 0.02	NA	< 0.02	88%	60%	140%	97%	60%	140%			
Toluene	1	2234713	< 0.08	< 0.08	NA	< 0.08	83%	60%	140%	85%	60%	140%			
Ethylbenzene	1	2234713	< 0.05	< 0.05	NA	< 0.05	83%	60%	140%	83%	60%	140%			
Xylenes (Total)	1	2234713	< 0.05	< 0.05	NA	< 0.05	86%	60%	140%	90%	60%	140%			
C6 - C10 (F1)	1	2234713	< 10	< 10	NA	< 10	99%	60%	140%	98%	60%	140%	101%	60%	140%
C6 - C10 (F1 minus BTEX)	1	2234713	< 10	< 10	NA	< 10	99%	60%	140%	98%	60%	140%	101%	60%	140%
>C10 - C16 (F2)	1	2234384	< 10	< 10	NA	< 10	97%	60%	140%	98%	60%	140%	97%	60%	140%
>C16 - C34 (F3)	1	2234384	< 50	< 50	NA	< 50	97%	60%	140%	98%	60%	140%	97%	60%	140%
>C34 - C50 (F4)	1	2234384	< 50	< 50	NA	< 50	95%	60%	140%	98%	60%	140%	97%	60%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 16 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723447

ATTENTION TO: Alan Parker

SAMPLED BY:

Trace Organics Analysis (Continued)

			-				•			•					
RPT Date: May 25, 2021			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured			Recoverv	Lin	ptable nits	Recoverv	Lin	ptable nits
		ld					Value	Lower	Upper			Upper]		Upper

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Volatile Organic Compounds in Soil - Field Preserved

Volatile Organic Compounds in So	il - Fiel	d Preserved	1												
Chloromethane	1	2234384	< 100	< 100	NA	< 100	86%	70%	130%	92%	60%	140%	80%	60%	140%
Vinyl Chloride	1	2234384	< 20	< 20	NA	< 20	90%	50%	140%	88%	60%	130%	75%	50%	140%
Bromomethane	1	2234384	< 50	< 50	NA	< 50	156%	50%	140%	123%	60%	130%	76%	50%	140%
Chloroethane	1	2234384	< 100	< 100	NA	< 100	100%	50%	140%	118%	60%	130%	84%	50%	140%
Trichlorofluoromethane (FREON 11)	1	2234384	< 100	< 100	NA	< 100	110%	50%	140%	133%	60%	130%	98%	50%	140%
Acetone	1	2234384	< 500	< 500	NA	< 500	94%	50%	140%	105%	50%	140%	95%	50%	140%
1,1-Dichloroethylene	1	2234384	< 50	< 50	NA	< 50	102%	50%	140%	120%	60%	130%	93%	50%	140%
Methylene Chloride (Dichloromethane)	1	2234384	< 100	< 100	NA	< 100	102%	50%	140%	110%	60%	130%	95%	50%	140%
trans-1,2-Dichloroethylene	1	2234384	< 80	< 80	NA	< 80	101%	50%	140%	115%	60%	130%	93%	50%	140%
1,1-Dichloroethane	1	2234384	< 100	< 100	NA	< 100	105%	50%	140%	113%	60%	130%	97%	50%	140%
cis-1,2-Dichloroethylene	1	2234384	< 100	< 100	NA	< 100	103%	50%	140%	114%	60%	130%	95%	50%	140%
Chloroform	1	2234384	< 50	< 50	NA	< 50	108%	50%	140%	148%	60%	130%	97%	50%	140%
1,2-Dichloroethane	1	2234384	< 100	< 100	NA	< 100	97%	50%	140%	102%	60%	130%	90%	50%	140%
1,1,1-Trichloroethane	1	2234384	< 30	< 30	NA	< 30	98%	50%	140%	113%	60%	130%	87%	50%	140%
Carbon Tetrachloride	1	2234384	< 50	< 50	NA	< 50	98%	50%	140%	119%	60%	130%	85%	50%	140%
Benzene	1	2234384	< 6.8	< 6.8	NA	< 6.8	98%	70%	130%	112%	60%	140%	91%	60%	140%
1,2-Dichloropropane	1	2234384	< 50	< 50	NA	< 50	102%	50%	140%	108%	60%	130%	92%	50%	140%
Trichloroethylene	1	2234384	< 10	< 10	NA	< 10	103%	50%	140%	120%	60%	130%	92%	50%	140%
Bromodichloromethane	1	2234384	< 100	< 100	NA	< 100	101%	50%	140%	107%	60%	130%	90%	50%	140%
cis-1,3-Dichloropropene	1	2234384	< 100	< 100	NA	< 100	99%	50%	140%	105%	60%	130%	88%	50%	140%
trans-1,3-Dichloropropene	1	2234384	< 100	< 100	NA	< 100	89%	50%	140%	101%	60%	130%	83%	50%	140%
1,1,2-Trichloroethane	1	2234384	< 30	< 30	NA	< 30	94%	50%	140%	111%	60%	130%	87%	50%	140%
Toluene	1	2234384	< 80	< 80	NA	< 80	85%	70%	130%	109%	60%	140%	77%	60%	140%
2-Hexanone	1	2234384	< 500	< 500	NA	< 500	87%	50%	140%	82%	50%	140%	79%	50%	140%
Dibromochloromethane	1	2234384	< 100	< 100	NA	< 100	97%	50%	140%	107%	60%	130%	87%	50%	140%
1,2-Dibromoethane	1	2234384	< 50	< 50	NA	< 50	94%	50%	140%	131%	60%	130%	88%	50%	140%
Tetrachloroethylene	1	2234384	< 100	< 100	NA	< 100	96%	50%	140%	105%	60%	130%	84%	50%	140%
1,1,1,2-Tetrachloroethane	1	2234384	< 100	< 100	NA	< 100	96%	50%	140%	108%	60%	130%	84%	50%	140%
Chlorobenzene	1	2234384	< 50	< 50	NA	< 50	92%	50%	140%	115%	60%	130%	81%	50%	140%
Ethylbenzene	1	2234384	< 18	< 18	NA	< 18	85%	70%	130%	112%	60%	140%	75%	60%	140%
m,p-Xylene	1	2234384	< 100	< 100	NA	< 100	79%	70%	130%	106%	60%	140%	71%	60%	140%
Bromoform	1	2234384	< 100	< 100	NA	< 100	94%	50%	140%	97%	60%	130%	82%	50%	140%
Styrene	1	2234384	< 100	< 100	NA	< 100	79%	50%	140%	96%	60%	130%	68%	50%	140%
1,1,2,2-Tetrachloroethane	1	2234384	< 50	< 50	NA	< 50	92%	50%	140%	103%	60%	130%	86%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 17 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723447

ATTENTION TO: Alan Parker

SAMPLED BY:

Trace Organics Analysis (Continued)

			-			•	•								
RPT Date: May 25, 2021			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	eptable nits
		Ia					Value	Lower	Upper		Lower	Upper		Lower	Upper
o-Xylene	1	2234384	< 100	< 100	NA	< 100	84%	70%	130%	105%	60%	140%	72%	60%	140%
1,3-Dichlorobenzene	1	2234384	< 50	< 50	NA	< 50	80%	50%	140%	84%	60%	130%	67%	50%	140%
1,4-Dichlorobenzene	1	2234384	< 50	< 50	NA	< 50	87%	50%	140%	72%	60%	130%	68%	50%	140%
1,2-Dichlorobenzene	1	2234384	< 50	< 50	NA	< 50	99%	50%	140%	60%	60%	130%	82%	50%	140%

Comments: Reference Material and Blank Spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

my Hu

AGAT QUALITY ASSURANCE REPORT (V1)

Page 18 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723447 ATTENTION TO: Alan Parker

SAMPLED BY:

			U	tra T	race	Anal	ysis								
RPT Date: May 25, 2021			C	UPLICAT	E		REFEREN		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lir	ptable nits	Recovery	1.10	eptable nits
		Ia					Value	Lower	Upper		Lower	Upper		Lower	Upper
Perfluorinated Compounds (soil)															
Perfluorobutanoic Acid PFBA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	91%	60%	140%	NA	60%	140%	91%	60%	140%
Perfluoropentanoic Acid PFPeA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	92%	60%	140%	NA	60%	140%	87%	60%	140%
Perfluorohexanoic Acid PFHxA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	99%	60%	140%	NA	60%	140%	94%	60%	140%
Perfluoroheptanoic Acid PFHpA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	102%	60%	140%	NA	60%	140%	98%	60%	140%
Perfluorooctanoic Acid PFOA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	91%	60%	140%	NA	60%	140%	85%	60%	140%
Perfluorononanoic Acid PFNA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	100%	60%	140%	NA	60%	140%	94%	60%	140%
Perfluorodecanoic Acid PFDA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	72%	60%	140%	NA	60%	140%	96%	60%	140%
Perfluoroundecanoic Acid PFUnA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	105%	60%	140%	NA	60%	140%	87%	60%	140%
Perfluorododecanoic Acid PFDoA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	69%	60%	140%	NA	60%	140%	75%	60%	140%
Perfluorotridecanoic Acid PFTrDA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	138%	60%	140%	NA	60%	140%	80%	60%	140%
Perfluorotetradecanoic Acid PFTeDA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	83%	60%	140%	NA	60%	140%	85%	60%	140%
Perfluorobutanesulfonic Acid PFBS	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	96%	60%	140%	NA	60%	140%	83%	60%	140%
Perfluorohexasulfonic Acid PFHxS	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	86%	60%	140%	NA	60%	140%	95%	60%	140%
Perfluoroheptanesulfonate PFHpS	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	117%	60%	140%	NA	60%	140%	100%	60%	140%
Perfluorooctasulfonic Acid PFOS	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	90%	60%	140%	NA	60%	140%	65%	60%	140%
Perfluorooctane sulfonamide PFOSA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	102%	60%	140%	NA	60%	140%	105%	60%	140%
Perfluorodecanesulfonic Acid PFDS	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	51%	60%	140%	NA	60%	140%	34%	60%	140%
N- Methylperfluorosulfonamideacetic N-MeFOSAA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	74%	60%	140%	NA	60%	140%	45%	60%	140%
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	1	2207629	< 1.0	< 1.0	0.0%	< 1.0	84%	60%	140%	NA	60%	140%	60%	60%	140%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 19 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

QC Exceedance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

AGAT WORK ORDER: 21X723447 ATTENTION TO: Alan Parker

RPT Date: May 25, 2021		REFERENC	E MATERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured	Acceptabl Limits	Recovery	Lin	ptable nits	Recoverv	Lin	eptable nits
		Value	Lower Upp			Upper		Lower	Upper
Available Metals in Soil									
Barium		101%	80% 120	6 106%	80%	120%	65%	70%	130%
Boron		113%	80% 120	% 122%	80%	120%	70%	70%	130%

Comments: Blank spike: Less than 10% of elements not within acceptance limits. Matrix spike: Less than 10% of elements not within acceptance limits.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 20 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

QC Exceedance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

AGAT WORK ORDER: 21X723447 ATTENTION TO: Alan Parker

RPT Date: May 25, 2021		REFERENC	E MATE	RIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured Value		ptable nits	Recovery	Lie	ptable nits	Recovery	Lie	eptable nits
		value	Lower	Upper		Lower	Upper	-	Lower	Upper
Volatile Organic Compounds in Soil - Field Preserved										
Bromomethane	2234384	156%	50%	140%	123%	60%	130%	76%	50%	140%
Trichlorofluoromethane (FREON 11)	2234384	110%	50%	140%	133%	60%	130%	98%	50%	140%
Chloroform	2234384	108%	50%	140%	148%	60%	130%	97%	50%	140%
1,2-Dibromoethane	2234384	94%	50%	140%	131%	60%	130%	88%	50%	140%

Comments: Reference Material and Blank Spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 21 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

QC Exceedance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

AGAT WORK ORDER: 21X723447 ATTENTION TO: Alan Parker

RPT Date: May 25, 2021		REFERENC	E MATER	RIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured	Accep Lim	ite	Recovery	Lin	ptable nits	Recovery	Lir	eptable nits
		Value	Lower			Lower	Upper	,	Lower	Upper
Perfluorinated Compounds (soil)										
Perfluorodecanesulfonic Acid PFDS	2207629	51%	60%	140%	NA	60%	140%	34%	60%	140%
N-Methylperfluorosulfonamideacetic N-MeFOSAA	2207629	74%	60%	140%	NA	60%	140%	45%	60%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 22 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

AGAT WORK ORDER: 21X723447

ATTENTION TO: Alan Parker

		ATTENTION TO.	
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Aluminum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Antimony	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Arsenic	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Barium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Beryllium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Boron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cadmium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Chromium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cobalt	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Copper	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
ron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
_ead	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
_ithium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
Manganese	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Molybdenum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Nickel	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Selenium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Silver	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Strontium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Thallium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Гin	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Jranium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
/anadium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Zinc	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS

Method Summary

CLIENT NAME: SNC Lavalin Inc. **PROJECT: 680449**

SAMPLING SITE

AGAT WORK ORDER: 21X723447

ATTENTION TO: Alan Parker

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		1	
Benzene	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS
Toluene	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS
Ethylbenzene	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS
Xylenes (Total)	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS
C6 - C10 (F1)	VOL-120-5015	CCME CWS Tier 1	GC/MS/FID
C6 - C10 (F1 minus BTEX)	VOL-120-5015	CCME CWS Tier 1	GC/MS/FID
>C10 - C16 (F2)	ORG-120-5102	Based on CCME CWS Tier 1	GC/FID
>C16 - C34 (F3)	ORG-120-5102	Based on CCME CWS Tier 1	GC/FID
>C34 - C50 (F4)	ORG-120-5102	Based on CCME CWS Tier 1	GC/FID
Gravimetric Heavy Hydrocarbons (F4G)	ORG-120-5102	Based on CCME CWS Tier 1	GRAVIMETRIC
o-terphenyl	ORG-120-5102	CCME	GC/FID
% Moisture	LAB-131-4024	CSSS 70.2	GRAVIMETRIC
1-Methylnaphthalene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
2-Methylnaphthalene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Acenaphthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Acenaphthylene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Acridine	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Anthracene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(a)anthracene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(a)pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(b)fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(j+k)fluoranthene	ORG-120-5119	EPA SW846/3541/3510/8270C	GC/MS
Benzo(e)pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(ghi)perylene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Chrysene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Dibenzo(a,h)anthracene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Fluorene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Indeno(1,2,3)pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Naphthalene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Perylene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Phenanthrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Quinoline	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Naphthalene-d8	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Terphenyl-d14	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Pyrene-d10 (%)	ORG-120-5119	EPA SW846/3510/8270C	GC/MS
Chloromethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Vinyl Chloride	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Bromomethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Chloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Trichlorofluoromethane (FREON 11)	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Acetone	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,1-Dichloroethylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Methylene Chloride (Dichloromethane)	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
trans-1,2-Dichloroethylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS

Method Summary

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723447 ATTENTION TO: Alan Parker

SAMPLING SITE:	SAMPLED BY:		
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1-Dichloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
cis-1,2-Dichloroethylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Chloroform	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,2-Dichloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,1,1-Trichloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Carbon Tetrachloride	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Benzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,2-Dichloropropane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Trichloroethylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Bromodichloromethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
cis-1,3-Dichloropropene	VOL-120-5002	EPA SW846 5035/8260B	(P&T)GC/MS
trans-1,3-Dichloropropene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,1,2-Trichloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Toluene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
2-Hexanone	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Dibromochloromethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,2-Dibromoethane	VOL-120-5002	EPA SW846 5235/8260B	GC/MS
Tetrachloroethylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,1,1,2-Tetrachloroethane	VOL-120- 5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Ethylbenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
m,p-Xylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Bromoform	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
Styrene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,1,2,2-Tetrachloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
o-Xylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,3-Dichlorobenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,4-Dichlorobenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
1,2-Dichlorobenzene	VOL-120-5002	EPA SW846 5235/8260B	GC/MS
Toluene-d8	VOL-120-5002	EPA SW846 5035/8260B	GC/MS
4-Bromofluorobenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS

Method Summary

CLIENT NAME: SNC Lavalin Inc. PROJECT: 680449 AGAT WORK ORDER: 21X723447 ATTENTION TO: Alan Parker

SAMPLING SITE:		SAMPLED BY:		
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE	
Ultra Trace Analysis			·	
Perfluorobutanoic Acid PFBA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluoropentanoic Acid PFPeA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorohexanoic Acid PFHxA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluoroheptanoic Acid PFHpA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorooctanoic Acid PFOA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorononanoic Acid PFNA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorodecanoic Acid PFDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluoroundecanoic Acid PFUnA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorododecanoic Acid PFDoA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorotridecanoic Acid PFTrDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorotetradecanoic Acid PFTeDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorobutanesulfonic Acid PFBS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorohexasulfonic Acid PFHxS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluoroheptanesulfonate PFHpS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorooctasulfonic Acid PFOS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorooctane sulfonamide PFOSA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorodecanesulfonic Acid PFDS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
N-Methylperfluorosulfonamideacetic N-MeFOSAA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorobutanoic Acid-13C4	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluoropentanoic Acid-13C5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorohexanoic Acid-13C5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluoroheptanoic Acid-13C4	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorooctanoic Acid-13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorononanoic Acid-13C9	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorodecanoic Acid-13C6	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluoroundecanoic Acid-13C7	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorododecanoic Acid-13C2	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorotetradecanoic Acid-13C2	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorobutanesulfonic Acid-13C3	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorohexasulfonic Acid-13C3	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorooctasulfonic Acid-13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
Perfluorooctane sulfonamide -13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	
N-Ethylperfluorosulfonamideacetic-D5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS	

CLIENT NAME: SNC Lavalin Inc. 5657 SPRING GARDEN RD, SUITE 200 HALIFAX , NS B3J3R4 (902) 492-4544 ATTENTION TO: Alan Parker PROJECT: 680449 AGAT WORK ORDER: 21X723545 TRACE ORGANICS REVIEWED BY: Amy Hunter, Trace Organics Supervisor, B.Sc. ULTRA TRACE REVIEWED BY: Olivier Lachance, Method Development Supervisor DATE REPORTED: Apr 08, 2021 PAGES (INCLUDING COVER): 18 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 18

AGAT WORK ORDER: 21X723545 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

DATE RECEIVED: 2021-03-19							C	DATE REPORTE	ED: 2021-04-08
		SAMPLE DESCRIPTION: SAMPLE TYPE:	TB1 Water	TB2 Water	TB3 Water	EB1 Water	FB2 Water	FB3 Water	FB4 Water
Parameter	Unit	DATE SAMPLED: G / S RDL	2021-03-15 2235320	2021-03-16 2235545	2021-03-17 2235546	2021-03-15 2235646	2021-03-16 2235744	2021-03-17 2235781	2021-03-18 2235819
Benzene	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylenes (Total)	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
C6 - C10 (F1)	µg/L	63	<63	<63	<63	<63	<63	<63	<63
C6 - C10 (F1 minus BTEX)	µg/L	63	<63	<63	<63	<63	<63	<63	<63
>C10 - C16 (F2)	µg/L	49	<49	<49	<49	<49	<49	<49	<49
C6 - C16 (F1 + F2)	µg/L	49	<49	<49	<49	<49	<49	<49	<49
>C16 - C34 (F3)	µg/L	100	<100	<100	<100	<100	<100	<100	<100
>C34 - C50 (F4)	µg/L	100	<100	<100	<100	<100	<100	<100	<100
>C16 - C50 (F3 + F4)	µg/L	100	<100	<100	<100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons (F4G)	µg/L	500	N/A						
Sediment			NO						
Surrogate	Unit	Acceptable Limits							
o-terphenyl	%	50-140	113	112	113	112	111	111	111

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2235320-2235819 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. NA = Not Applicable

Analysis performed at AGAT Halifax (unless marked by *)

any

AGAT WORK ORDER: 21X723545 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

		Polycy	clic Arom	atic Hydroc	arbons in V	Nater - (PAH	H)			
DATE RECEIVED: 2021-03-19							[DATE REPORT	ED: 2021-04-08	
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	TB1 Water 2021-03-15 2235320	TB2 Water 2021-03-16 2235545	TB3 Water 2021-03-17 2235546	EB1 Water 2021-03-15 2235646	FB1 Water 2021-03-15 2235741	FB2 Water 2021-03-16 2235744	FB3 Water 2021-03-17 2235781	FB4 Water 2021-03-18 2235819
1-Methylnaphthalene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acridine	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	ug/L	0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012
Benzo(a)anthracene	ug/L	0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Benzo(a)pyrene	ug/L	0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(b)fluoranthene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(j+k)fluoranthene	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(e)pyrene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(ghi)perylene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h)anthracene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perylene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Quinoline	ug/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sediment			NO							
Surrogate	Unit	Acceptable Limits								
Naphthalene-d8	%	50-140	77	92	78	75	78	79	78	81
Terphenyl-d14	%	50-140	83	104	81	83	82	88	81	85
Pyrene-d10	%	50-140	81	118	78	77	79	83	78	79

my Huj

AGAT WORK ORDER: 21X723545 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Polycyclic Aromatic Hydrocarbons in Water - (PAH)

DATE RECEIVED: 2021-03-19

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2235320-2235819 Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Benzo(j+k)fluoranthene is not an accredited parameter. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Halifax (unless marked by *)

my Huj

DATE REPORTED: 2021-04-08

AGAT WORK ORDER: 21X723545 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

			Volatile C	Organic Com	pounds in	Water				
DATE RECEIVED: 2021-03-19							I	DATE REPORTI	ED: 2021-04-08	
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	TB1 Water 2021-03-15 2235320	TB2 Water 2021-03-16 2235545	TB3 Water 2021-03-17 2235546	EB1 Water 2021-03-15 2235646	FB2 Water 2021-03-16 2235744	FB3 Water 2021-03-17 2235781	FB4 Water 2021-03-18 2235819	
Chloromethane	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
Vinyl Chloride	ug/L	0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
Bromomethane	ug/L	0.89	<0.89	<0.89	<0.89	<0.89	<0.89	<0.89	<0.89	
Chloroethane	ug/L	5	<5	<5	<5	<5	<5	<5	<5	
Trichlorofluoromethane (FREON 11)	ug/L	5	<5	<5	<5	<5	<5	<5	<5	
Acetone	ug/L	10	<10	<10	<10	<10	<10	<10	<10	
1,1-Dichloroethylene	ug/L	0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
Methylene Chloride (Dichloromethane)	ug/L	2	<2	<2	<2	<2	<2	<2	<2	
trans-1,2-Dichloroethylene	ug/L	2	<2	<2	<2	<2	<2	<2	<2	
1,1-Dichloroethane	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
cis-1,2-Dichloroethylene	ug/L	2	<2	<2	<2	<2	<2	<2	<2	
Chloroform	ug/L	1	5	4	<1	<1	<1	<1	<1	
1,2-Dichloroethane	ug/L	2	<2	<2	<2	<2	<2	<2	<2	
1,1,1-Trichloroethane	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
Carbon Tetrachloride	ug/L	0.56	<0.56	<0.56	<0.56	<0.56	<0.56	<0.56	<0.56	
Benzene	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
1,2-Dichloropropane	ug/L	0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	
Trichloroethylene	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
Bromodichloromethane	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
cis-1,3-Dichloropropene	ug/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
trans-1,3-Dichloropropene	ug/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
1,1,2-Trichloroethane	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
Toluene	ug/L	2	<2	<2	<2	<2	<2	<2	<2	
2-Hexanone	ug/L	10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	
Dibromochloromethane	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
1,2-Dibromoethane	ug/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Tetrachloroethylene	ug/L	2	<2	<2	<2	<2	<2	<2	<2	
1,1,1,2-Tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chlorobenzene	ug/L	1	<1	<1	<1	<1	<1	<1	<1	

Certified By:

my n

AGAT WORK ORDER: 21X723545 PROJECT: 680449

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

			Volatile (Organic Con	npounds in	Water				
DATE RECEIVED: 2021-03-19							I	DATE REPORT	ED: 2021-04-08	
Parameter	Unit	SAMPLE DESCRIPTIC SAMPLE TYF DATE SAMPLE G / S RDL	PE: Water	TB2 Water 2021-03-16 2235545	TB3 Water 2021-03-17 2235546	EB1 Water 2021-03-15 2235646	FB2 Water 2021-03-16 2235744	FB3 Water 2021-03-17 2235781	FB4 Water 2021-03-18 2235819	
Ethylbenzene	ug/L	2	<2	<2	<2	<2	<2	<2	<2	
m,p-Xylene	ug/L	4	<4	<4	<4	<4	<4	<4	<4	
Bromoform	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
Styrene	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
1,1,2,2-Tetrachloroethane	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
o-Xylene	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
1,3-Dichlorobenzene	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
1,4-Dichlorobenzene	ug/L	1	<1	<1	<1	<1	<1	<1	<1	
1,2-Dichlorobenzene Surrogate	ug/L Unit	0.7 Acceptable Limits	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	
Toluene-d8	%	60-140	92	95	94	94	94	95	96	
4-Bromofluorobenzene	%	60-140	84	83	86	85	85	88	80	

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

Analysis performed at AGAT Halifax (unless marked by *)

any Huj

AGAT WORK ORDER: 21X723545 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

				Perfluor	inated Com	pounds (wa	ater)				
DATE RECEIVED: 2021-03-19								[DATE REPORT	ED: 2021-04-08	
Parameter	Unit	SAMPLE DESCRIF SAMPLE DATE SAM G/S F	TYPE:	TB1 Water 2021-03-15 2235320	TB2 Water 2021-03-16 2235545	TB3 Water 2021-03-17 2235546	EB1 Water 2021-03-15 2235646	EB2 Water 2021-03-16 2235649	EB3 Water 2021-03-17 2235660	EB4 Water 2021-03-18 2235661	FB1 Water 2021-03-15 2235741
Perfluorobutanoic Acid PFBA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoropentanoic Acid PFPeA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorohexanoic Acid PFHxA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroheptanoic Acid PFHpA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctanoic Acid PFOA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorononanoic Acid PFNA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorodecanoic Acid PFDA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroundecanoic Acid PFUnA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorododecanoic Acid PFDoA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorotridecanoic Acid PFTrDA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorotetradecanoic Acid PFTeDA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorobutanesulfonic Acid PFBS	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorohexasulfonic Acid PFHxS	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluoroheptanesulfonate PFHpS	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctasulfonic Acid PFOS	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorooctanesulfonamide Acid PFOSA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Perfluorodecanesulfonic Acid PFDS	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Methylperfluorosulfonamideacetic N-MeFOSAA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	ng/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

AGAT WORK ORDER: 21X723545 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

			Perfluor	inated Com	pounds (wa	ater)				
DATE RECEIVED: 2021-03-19							[DATE REPORT	ED: 2021-04-08	
		SAMPLE DESCRIPTION:	TB1	TB2	TB3	EB1	EB2	EB3	EB4	FB1
		SAMPLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATE SAMPLED:	2021-03-15	2021-03-16	2021-03-17	2021-03-15	2021-03-16	2021-03-17	2021-03-18	2021-03-15
Surrogate	Unit	Acceptable Limits	2235320	2235545	2235546	2235646	2235649	2235660	2235661	2235741
Perfluorobutanoic Acid-13C4	%	30-140	87	73	81	72	92	112	98	78
Perfluoropentanoic Acid-13C5	%	30-140	81	72	73	67	86	108	89	70
Perfluorohexanoic Acid-13C5	%	30-140	85	74	86	70	91	112	93	79
Perfluoroheptanoic Acid-13C4	%	30-140	91	78	81	72	86	101	92	77
Perfluorooctanoic Acid-13C8	%	30-140	79	80	85	75	89	107	101	82
Perfluorononanoic Acid-13C9	%	30-140	90	82	88	83	93	111	97	78
Perfluorodecanoic Acid-13C6	%	30-140	56	60	79	71	76	88	49	76
Perfluoroundecanoic Acid-13C7	%	30-140	40	39	54	87	46	56	37	45
Perfluorododecanoic Acid-13C2	%	30-140	39	26	41	30	31	41	32	30
Perfluorotetradecanoic Acid-13C2	%	30-140	31	18	41	15	43	31	32	37
Perfluorobutanesulfonic Acid-13C3	%	30-140	76	65	76	63	82	99	92	69
Perfluorohexasulfonic Acid-13C3	%	30-140	96	77	81	65	83	102	108	69
Perfluorooctasulfonic Acid-13C8	%	30-140	54	60	60	71	53	81	51	57
Perfluorooctane sulfonamide -13C8	%	30-140	37	30	46	35	31	38	30	35
N-Ethylperfluorosulfonamideacetic- D5	%	30-140	42	31	67	33	43	49	38	41

Over lachance 2008-083 2008-083

AGAT WORK ORDER: 21X723545 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

				Perfluor	inated Com	pounds (wa	ater)
DATE RECEIVED: 2021-03-19							DATE REPORTED: 2021-04-08
		SAMPLE DESCRIF SAMPLE DATE SAM	TYPE:	FB2 Water 2021-03-16	FB3 Water 2021-03-17	FB4 Water 2021-03-18	
Parameter	Unit	G/S F	RDL	2235744	2235781	2235819	
Perfluorobutanoic Acid PFBA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluoropentanoic Acid PFPeA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorohexanoic Acid PFHxA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluoroheptanoic Acid PFHpA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorooctanoic Acid PFOA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorononanoic Acid PFNA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorodecanoic Acid PFDA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluoroundecanoic Acid PFUnA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorododecanoic Acid PFDoA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorotridecanoic Acid PFTrDA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorotetradecanoic Acid PFTeDA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorobutanesulfonic Acid PFBS	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorohexasulfonic Acid PFHxS	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluoroheptanesulfonate PFHpS	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorooctasulfonic Acid PFOS	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorooctanesulfonamide Acid PFOSA	ng/L		1.0	<1.0	<1.0	<1.0	
Perfluorodecanesulfonic Acid PFDS	ng/L		1.0	<1.0	<1.0	<1.0	
N-Methylperfluorosulfonamideacetic N-MeFOSAA	ng/L		1.0	<1.0	<1.0	<1.0	
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	ng/L		1.0	<1.0	<1.0	<1.0	

AGAT WORK ORDER: 21X723545 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

			Perfluor	inated Com	pounds (wa	ater)
DATE RECEIVED: 2021-03-19						DATE REPORTED: 2021-04-08
		SAMPLE DESCRIPTION:	FB2	FB3	FB4	
		SAMPLE TYPE:	Water	Water	Water	
		DATE SAMPLED:	2021-03-16	2021-03-17	2021-03-18	
Surrogate	Unit	Acceptable Limits	2235744	2235781	2235819	
Perfluorobutanoic Acid-13C4	%	30-140	66	79	83	
Perfluoropentanoic Acid-13C5	%	30-140	58	76	77	
Perfluorohexanoic Acid-13C5	%	30-140	67	83	79	
Perfluoroheptanoic Acid-13C4	%	30-140	59	78	76	
Perfluorooctanoic Acid-13C8	%	30-140	64	86	75	
Perfluorononanoic Acid-13C9	%	30-140	66	76	80	
Perfluorodecanoic Acid-13C6	%	30-140	50	54	67	
Perfluoroundecanoic Acid-13C7	%	30-140	35	40	31	
Perfluorododecanoic Acid-13C2	%	30-140	17	31	19	
Perfluorotetradecanoic Acid-13C2	%	30-140	15	33	30	
Perfluorobutanesulfonic Acid-13C3	%	30-140	54	74	86	
Perfluorohexasulfonic Acid-13C3	%	30-140	59	69	81	
Perfluorooctasulfonic Acid-13C8	%	30-140	57	52	78	
Perfluorooctane sulfonamide -13C8	%	30-140	42	35	36	
N-Ethylperfluorosulfonamideacetic- D5	%	30-140	30	38	31	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2235545 Surrogate recovery percentages are out of compliancedue to matrix interference.

2235646 Surrogate recovery percentages are out of compliancedue to matrix interference.

2235744 Surrogate recovery percentages are out of compliancedue to matrix interference.

2235819 Surrogate recovery percentages are out of compliancedue to matrix interference.

Analysis performed at AGAT Montréal (unless marked by *)

Page 11 of 18

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723545 ATTENTION TO: Alan Parker

SAMPLED BY:

Trace Organics Analysis

			mat		gam	0071	iury 5	10							
RPT Date: Apr 08, 2021			[DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	1 15	eptable mits	Recovery	1 1 1 1	eptable mits
		iu iu					value	Lower	Upper		Lower	Upper		Lower	Upper
Polycyclic Aromatic Hydrocarbor	ns in Wate	er - (PAH)													
1-Methylnaphthalene	1	2231030	< 0.01	< 0.01	NA	< 0.01	113%	50%	140%	116%	50%	140%	127%	50%	140%
2-Methylnaphthalene	1	2231030	< 0.01	< 0.01	NA	< 0.01	111%	50%	140%	105%	50%	140%	118%	50%	140%
Acenaphthene	1	2231030	< 0.01	< 0.01	NA	< 0.01	115%	50%	140%	118%	50%	140%	126%	50%	140%
Acenaphthylene	1	2231030	< 0.01	< 0.01	NA	< 0.01	97%	50%	140%	97%	50%	140%	100%	50%	140%
Acridine	1	2231030	< 0.01	< 0.01	NA	< 0.01	92%	50%	140%	92%	50%	140%	94%	50%	140%
Anthracene	1	2231030	< 0.012	< 0.012	NA	< 0.012	88%	50%	140%	87%	50%	140%	75%	50%	140%
Benzo(a)anthracene	1	2231030	< 0.018	< 0.018	NA	< 0.018	81%	50%	140%	82%	50%	140%	83%	50%	140%
Benzo(a)pyrene	1	2231030	< 0.010	< 0.010	NA	< 0.010	84%	50%	140%	86%	50%	140%	88%	50%	140%
Benzo(b)fluoranthene	1	2231030	< 0.01	< 0.01	NA	< 0.01	123%	50%	140%	131%	50%	140%	131%	50%	140%
Benzo(j+k)fluoranthene	1	2231030	< 0.01	< 0.01	NA	< 0.01	118%	50%	140%	85%	50%	140%	89%	50%	140%
Benzo(e)pyrene	1	2231030	< 0.01	< 0.01	NA	< 0.01	112%	50%	140%	115%	50%	140%	120%	50%	140%
Benzo(ghi)perylene	1	2231030	< 0.01	< 0.01	NA	< 0.01	71%	50%	140%	78%	50%	140%	79%	50%	140%
Chrysene	1	2231030	< 0.01	< 0.01	NA	< 0.01	114%	50%	140%	127%	50%	140%	130%	50%	140%
Dibenzo(a,h)anthracene	1	2231030	< 0.01	< 0.01	NA	< 0.01	67%	50%	140%	68%	50%	140%	60%	50%	140%
Fluoranthene	1	2231030	< 0.01	< 0.01	NA	< 0.01	97%	50%	140%	106%	50%	140%	109%	50%	140%
Fluorene	1	2231030	< 0.01	< 0.01	NA	< 0.01	106%	50%	140%	114%	50%	140%	118%	50%	140%
Indeno(1,2,3-cd)pyrene	1	2231030	< 0.01	< 0.01	NA	< 0.01	93%	50%	140%	106%	50%	140%	101%	50%	140%
Naphthalene	1	2231030	< 0.01	< 0.01	NA	< 0.01	113%	50%	140%	112%	50%	140%	121%	50%	140%
Perylene	1	2231030	< 0.01	< 0.01	NA	< 0.01	102%	50%	140%	119%	50%	140%	122%	50%	140%
Phenanthrene	1	2231030	< 0.01	< 0.01	NA	< 0.01	107%	50%	140%	125%	50%	140%	121%	50%	140%
Pyrene	1	2231030	< 0.01	< 0.01	NA	< 0.01	106%	50%	140%	116%	50%	140%	117%	50%	140%
Quinoline	1	2231030	< 0.01	< 0.01	NA	< 0.01	74%	50%	140%	97%	50%	140%	114%	50%	140%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on a different sample than the duplicate.

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

CCME Petroleum Hydrocarbon	F1 - F4 in	Water													
Benzene	1	2234844	< 0.2	< 0.2	NA	< 0.2	106%	70%	130%	119%	70%	130%			
Toluene	1	2234844	< 0.2	< 0.2	NA	< 0.2	108%	70%	130%	119%	70%	130%			
Ethylbenzene	1	2234844	< 0.1	< 0.1	NA	< 0.1	111%	70%	130%	123%	70%	130%			
Xylenes (Total)	1	2234844	< 0.2	< 0.2	NA	< 0.2	108%	70%	130%	120%	70%	130%			
C6 - C10 (F1)	1	2234844	< 63	< 63	NA	< 63	103%	60%	140%	97%	60%	140%	100%	60%	140%
C6 - C10 (F1 minus BTEX)	1	2234844	< 63	< 63	NA	< 63	103%	60%	140%	97%	60%	140%	100%	60%	140%
>C10 - C16 (F2)	1	2235320	< 49	< 49	NA	< 49	98%	60%	140%	102%	60%	140%	115%	60%	140%
>C16 - C34 (F3)	1	2235320	< 100	< 100	NA	< 100	95%	60%	140%	102%	60%	140%	115%	60%	140%
>C34 - C50 (F4)	1	2235320	< 100	< 100	NA	< 100	90%	60%	140%	102%	60%	140%	115%	60%	140%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on a different sample than the duplicate.

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Volatile Organic Compounds in Water

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723545 ATTENTION TO: Alan Parker SAMPLED BY:

Trace Organics Analysis (Continued)

		ilace	0.9	amoo	7 110		(00)		404	/			r		
RPT Date: Apr 08, 2021			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK		MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		eptable nits	Recovery		ptable nits
								Lower	Upper		Lower	Upper		Lower	Uppe
Chloromethane	2230851		<1	<1	NA	< 1	81%	50%	140%	80%	60%	130%	81%	50%	140%
Vinyl Chloride	2230851		<0.6	<0.6	NA	< 0.6	88%	50%	140%	91%	60%	130%	97%	50%	1409
Bromomethane	2230851		<0.89	<0.89	NA	< 0.89	155%	50%	140%	158%	60%	130%	92%	50%	1409
Chloroethane	2230851		<5	<5	NA	< 5	100%	50%	140%	101%	60%	130%	104%	50%	1409
Trichlorofluoromethane (FREON 11)	2230851		<5	<5	NA	< 5	115%	50%	140%	119%	60%	130%	131%	50%	140%
Acetone	2230851		<10	<10	NA	< 10	98%	50%	140%	105%	50%	140%	105%	50%	140%
1,1-Dichloroethylene	2230851		<0.6	<0.6	NA	< 0.6	105%	50%	140%	109%	60%	130%	116%	50%	1409
Methylene Chloride (Dichloromethane)	2230851		<2	<2	NA	< 2	98%	50%	140%	102%	60%	130%	107%	50%	1409
trans-1,2-Dichloroethylene	2230851		<2	<2	NA	< 2	99%	50%	140%	104%	60%	130%	108%	50%	140%
1,1-Dichloroethane	2230851		<1	<1	NA	< 1	100%	50%	140%	104%	60%	130%	109%	50%	140%
cis-1,2-Dichloroethylene	2230851		<2	<2	NA	< 2	99%	50%	140%	102%	60%	130%	108%	50%	140%
Chloroform	2230851		194	174	10.9%	< 1	100%	50%	140%	106%	60%	130%	NA	50%	140%
1,2-Dichloroethane	2230851		<2	<2	NA	< 2	92%	50%	140%	99%	60%	130%	100%	50%	1409
1,1,1-Trichloroethane	2230851		<1	<1	NA	< 1	96%	50%	140%	101%	60%	130%	106%	50%	1409
Carbon Tetrachloride	2230851		<0.56	<0.56	NA	< 0.56	100%	50%	140%	106%	60%	130%	113%	50%	140%
Benzene	2230851		<1	<1	NA	< 1	94%	70%	130%	98%	60%	140%	103%	60%	1409
1,2-Dichloropropane	2230851		<0.7	<0.7	NA	< 0.7	94%	50%	140%	98%	60%	130%	100%	50%	1409
Trichloroethylene	2230851		<1	<1	NA	< 1	94%	50%	140%	101%	60%	130%	118%	50%	1409
Bromodichloromethane	2230851		5	5	6.6%	< 1	93%	50%	140%	97%	60%	130%	108%	50%	1409
cis-1,3-Dichloropropene	2230851		<0.5	<0.5	NA	< 0.5	96%	50%	140%	102%	60%	130%	70%	50%	1409
trans-1,3-Dichloropropene	2230851		<0.5	<0.5	NA	< 0.5	94%	50%	140%	99%	60%	130%	66%	50%	1409
1,1,2-Trichloroethane	2230851		<1	<1	NA	< 1	92%	50%	140%	98%	60%	130%	99%	50%	1409
Toluene	2230851		<2	<2	NA	< 2	89%	70%	130%	92%	60%	140%	95%	60%	1409
2-Hexanone	2230851		<10.0	<10.0	NA	< 10.0	97%	50%	140%	103%	50%	140%	95%	50%	140%
Dibromochloromethane	2230851		<1	<1	NA	< 1	93%	50%	140%	98%	60%	130%	104%	50%	140%
1,2-Dibromoethane	2230851		<0.2	<0.2	NA	< 0.2	93%	50%	140%	97%	60%	130%	100%	50%	1409
Tetrachloroethylene	2230851		<2	<2	NA	< 2	104%	50%	140%	109%	60%	130%	116%	50%	140
1,1,1,2-Tetrachloroethane	2230851		<0.5	<0.5	NA	< 0.5	90%	50%	140%	96%	60%	130%	100%	50%	1409
Chlorobenzene	2230851		<1	<1	NA	< 1	90%	50%	140%	94%	60%	130%	97%	50%	1409
Ethylbenzene	2230851		<2	<2	NA	< 2	92%	70%	130%	95%	60%	140%	97%	60%	1409
m,p-Xylene	2230851		<4	<4	NA	< 4	86%		130%	90%		140%	91%	60%	1409
Bromoform	2230851		<1	<1	NA	< 1	90%		140%	94%		130%	98%	50%	
Styrene	2230851		<1	<1	NA	< 1	81%		140%	84%		130%	84%	50%	
1,1,2,2-Tetrachloroethane	2230851		<1	<1	NA	< 1	91%		140%	97%		130%	97%	50%	
o-Xylene	2230851		<1	<1	NA	< 1	88%	70%	130%	92%	60%	140%	94%	60%	140%
1,3-Dichlorobenzene	2230851		<1	<1	NA	< 1	84%	50%	140%	89%	60%	130%	93%	50%	1409
1,4-Dichlorobenzene	2230851		<1	<1	NA	< 1	94%	50%	140%	94%	60%	130%	100%	50%	1409
1,2-Dichlorobenzene	2230851		<0.7	<0.7	NA	< 0.7	101%	50%	140%	110%	60%	130%	106%	50%	1409

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 18

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723545

ATTENTION TO: Alan Parker

SAMPLED BY:

Trace Organics Analysis (Continued)

			0				•			,					
RPT Date: Apr 08, 2021		DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper]	Lower	Upper

Comments: Reference Material and Blank Spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on different sample than duplicate. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

my Hu

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 18

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723545 ATTENTION TO: Alan Parker

SAMPLED BY:

Ultra Trace Analysis

			0			/ 110	, 010								
PT Date: Apr 08, 2021			DUPLICATE				REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value			Recovery	Accepta Limits			Acceptable Limits	
		ld					value	Lower	Upper	-		Upper		Lower	Upper
Perfluorinated Compounds (water)														
Perfluorobutanoic Acid PFBA	1	2235649	< 1.0	< 1.0	NA	< 1.0	80%	60%	140%	NA	60%	140%	86%	60%	140%
Perfluoropentanoic Acid PFPeA	1	2235649	< 1.0	< 1.0	NA	< 1.0	82%	60%	140%	NA	60%	140%	85%	60%	140%
Perfluorohexanoic Acid PFHxA	1	2235649	< 1.0	< 1.0	NA	< 1.0	75%	60%	140%	NA	60%	140%	82%	60%	140%
Perfluoroheptanoic Acid PFHpA	1	2235649	< 1.0	< 1.0	NA	< 1.0	80%	60%	140%	NA	60%	140%	85%	60%	140%
Perfluorooctanoic Acid PFOA	1	2235649	< 1.0	< 1.0	NA	< 1.0	86%	60%	140%	NA	60%	140%	86%	60%	140%
Perfluorononanoic Acid PFNA	1	2235649	< 1.0	< 1.0	NA	< 1.0	78%	60%	140%	NA	60%	140%	87%	60%	140%
Perfluorodecanoic Acid PFDA	1	2235649	< 1.0	< 1.0	NA	< 1.0	68%	60%	140%	NA	60%	140%	82%	60%	140%
Perfluoroundecanoic Acid PFUnA	1	2235649	< 1.0	< 1.0	NA	< 1.0	61%	60%	140%	NA	60%	140%	68%	60%	140%
Perfluorododecanoic Acid PFDoA	1	2235649	< 1.0	< 1.0	NA	< 1.0	111%	60%	140%	NA	60%	140%	103%	60%	140%
Perfluorotridecanoic Acid PFTrDA	1	2235649	< 1.0	< 1.0	NA	< 1.0	85%	60%	140%	NA	60%	140%	70%	60%	140%
Perfluorotetradecanoic Acid PFTeDA	1	2235649	< 1.0	< 1.0	NA	< 1.0	98%	60%	140%	NA	60%	140%	86%	60%	140%
Perfluorobutanesulfonic Acid PFBS	1	2235649	< 1.0	< 1.0	NA	< 1.0	82%	60%	140%	NA	60%	140%	82%	60%	140%
Perfluorohexasulfonic Acid PFHxS	1	2235649	< 1.0	< 1.0	NA	< 1.0	79%	60%	140%	NA	60%	140%	80%	60%	140%
Perfluoroheptanesulfonate PFHpS	1	2235649	< 1.0	< 1.0	NA	< 1.0	103%	60%	140%	NA	60%	140%	90%	60%	140%
Perfluorooctasulfonic Acid PFOS	1	2235649	< 1.0	< 1.0	NA	< 1.0	76%	60%	140%	NA	60%	140%	76%	60%	140%
Perfluorooctanesulfonamide Acid PFOSA	1	2235649	< 1.0	< 1.0	NA	< 1.0	120%	60%	140%	NA	60%	140%	137%	60%	140%
Perfluorodecanesulfonic Acid PFDS	1	2235649	< 1.0	< 1.0	NA	< 1.0	138%	60%	140%	NA	60%	140%	84%	60%	140%
N- Methylperfluorosulfonamideacetic N-MeFOSAA	1	2235649	< 1.0	< 1.0	NA	< 1.0	100%	60%	140%	NA	60%	140%	99%	60%	140%
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	1	2235649	< 1.0	< 1.0	NA	< 1.0	85%	60%	140%	NA	60%	140%	81%	60%	140%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 18

QC Exceedance

CLIENT NAME: SNC Lavalin Inc.

AGAT WORK ORDER: 21X723545

PROJECT: 6	80449
------------	-------

ATTENTION TO: Alan Parker

PARAMETER Sample Id Measured Limits Recovery Limits Recovery	Acceptable	
	Acceptable Limits	
Value Lower Upper Lower Upper	Lower Upper	

Bromomethane

155% 50% 140% 158% 60% 130% 92% 50% 140%

Comments: Reference Material and Blank Spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on different sample than duplicate. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Method Summary

CLIENT NAME: SNC Lavalin Inc. PROJECT: 680449

AGAT WORK ORDER: 21X723545

ATTENTION TO: Alan Parker

FROJECT. 000449											
SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis		I	1								
Benzene	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS								
Toluene	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS								
Ethylbenzene	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS								
Xylenes (Total)	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS								
C6 - C10 (F1)	VOL-120-5015	CCME CWS Tier 1	GC/MS/FID								
C6 - C10 (F1 minus BTEX)	VOL-120-5015	CCME Tier 1 Method	GC/MS/FID								
>C10 - C16 (F2)	ORG-120-5103	based on CCME Tier 1 Method	GC/FID								
C6 - C16 (F1 + F2)	VOL-120-5014	based on CCME Tier 1 Method	Calculation								
>C16 - C34 (F3)	ORG-120-5103	based on CCME Tier 1 Method	GC/FID								
>C34 - C50 (F4)	ORG-120-5103	based on CCME Tier 1 Method	GC/FID								
>C16 - C50 (F3 + F4)	ORG-120-5103	based on CCME Tier 1 Method	CALCULATION								
Gravimetric Heavy Hydrocarbons (F4G)	ORG-120-5103	based on CCME Tier 1 Method	GRAVIMETRIC								
Sediment	000 400 5400		GC/MS/FID								
o-terphenyl	ORG-120-5103	Based on CCME	GC/FID								
1-Methylnaphthalene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
2-Methylnaphthalene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Acenaphthene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Acenaphthylene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Acridine	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Anthracene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Benzo(a)anthracene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Benzo(a)pyrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Benzo(b)fluoranthene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Benzo(j+k)fluoranthene	ORG-120-5103	EPA SW-846 3510C & 8270	GC/MS								
Benzo(e)pyrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Benzo(ghi)perylene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Chrysene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Dibenzo(a,h)anthracene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Fluoranthene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Fluorene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Indeno(1,2,3-cd)pyrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Naphthalene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Perylene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Phenanthrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Pyrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Quinoline	ORG-120-5119	EPA SW846/3510/8270C	GC/MS								
Naphthalene-d8	ORG-120-5104	EPA SW846/3510/8270C	GC/MS								
Terphenyl-d14	ORG-120-5104	EPA SW846/3510/8270C	GC/MS								
Pyrene-d10	ORG-120-5104	EPA SW846/3510/8270C	GC/MS								
Chloromethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								
Vinyl Chloride	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Bromomethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Chloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								
Trichlorofluoromethane (FREON 11)	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								
Acetone	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								
1,1-Dichloroethylene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								

Method Summary

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X723545 ATTENTION TO: Alan Parker

SAMPLING SITE:		SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Methylene Chloride (Dichloromethane)	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
trans-1,2-Dichloroethylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
1,1-Dichloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
cis-1,2-Dichloroethylene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
Chloroform	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
1,2-Dichloroethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
1,1,1-Trichloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
Carbon Tetrachloride	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
Benzene	VOL-120-5001	EPA SW-846 5030B/8260	GC/MS									
1,2-Dichloropropane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
Trichloroethylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
Bromodichloromethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
cis-1,3-Dichloropropene	VOL-120-5001	EPA SW-846 5030B/8260B	(P&T)GC/MS									
trans-1,3-Dichloropropene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
1,1,2-Trichloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
Toluene	VOL-120-5001	EPA SW-846 5030B/8260	GC/MS									
2-Hexanone	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
Dibromochloromethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
1,2-Dibromoethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
Tetrachloroethylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
1,1,1,2-Tetrachloroethane	VOL-120-5001	EPA SW846 5035/8260B	GC/MS									
Chlorobenzene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
Ethylbenzene	VOL-120-5001	EPA SW-846 5030B/8260	GC/MS									
m,p-Xylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
Bromoform	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
Styrene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
1,1,2,2-Tetrachloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
o-Xylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
1,3-Dichlorobenzene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
1,4-Dichlorobenzene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS									
1,2-Dichlorobenzene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS									
Toluene-d8	VOL-120-5001	EPA SW846 5030B/8260B	GC/MS									
4-Bromofluorobenzene	VOL-120-5001	EPA SW846 5030B/8260B	GC/MS									

Method Summary

CLIENT NAME: SNC Lavalin Inc. PROJECT: 680449 AGAT WORK ORDER: 21X723545 ATTENTION TO: Alan Parker

SAMPLING SITE:		SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Ultra Trace Analysis												
Perfluorobutanoic Acid PFBA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluoropentanoic Acid PFPeA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorohexanoic Acid PFHxA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluoroheptanoic Acid PFHpA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorooctanoic Acid PFOA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorononanoic Acid PFNA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorodecanoic Acid PFDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluoroundecanoic Acid PFUnA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorododecanoic Acid PFDoA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorotridecanoic Acid PFTrDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorotetradecanoic Acid PFTeDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorobutanesulfonic Acid PFBS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorohexasulfonic Acid PFHxS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluoroheptanesulfonate PFHpS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorooctasulfonic Acid PFOS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorooctanesulfonamide Acid PFOSA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorodecanesulfonic Acid PFDS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
N-Methylperfluorosulfonamideacetic N-MeFOSAA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorobutanoic Acid-13C4	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluoropentanoic Acid-13C5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorohexanoic Acid-13C5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluoroheptanoic Acid-13C4	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorooctanoic Acid-13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorononanoic Acid-13C9	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorodecanoic Acid-13C6	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluoroundecanoic Acid-13C7	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorododecanoic Acid-13C2	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorotetradecanoic Acid-13C2	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorobutanesulfonic Acid-13C3	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorohexasulfonic Acid-13C3	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorooctasulfonic Acid-13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
Perfluorooctane sulfonamide -13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									
N-Ethylperfluorosulfonamideacetic-D5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS									

CLIENT NAME: SNC Lavalin Inc. 5657 SPRING GARDEN RD, SUITE 200 HALIFAX, NS B3J3R4 (902) 492-4544 **ATTENTION TO: Alan Parker PROJECT: 680449** AGAT WORK ORDER: 21X725158 SOIL ANALYSIS REVIEWED BY: Marta Manka, Data Reporter TRACE ORGANICS REVIEWED BY: Amy Hunter, Trace Organics Supervisor, B.Sc. ULTRA TRACE REVIEWED BY: Olivier Lachance, Method Development Supervisor DATE REPORTED: Apr 07, 2022 PAGES (INCLUDING COVER): 25 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*Notes Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

ATTENTION TO: Alan Parker

SAMPLED BY:

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

			A۱	ailable Met	als in Soil					
DATE RECEIVED: 2021-03-23							I	DATE REPORT	ED: 2022-04-07	
			S5551-21BH01-	S5551-21BH01-	S5551-21BH01-	S5551-21BH04-	S5551-21BH04-	S5551-21BH04-	S5551-21BH04-	S5551-21MW06-
		SAMPLE DESCRIPTION:	01	08	09	01	05	08	09	21SS-01
		SAMPLE TYPE:	Soil	Soil						
		DATE SAMPLED:	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22
Parameter	Unit	G/S RDL	2254220	2254353	2254356	2254375	2254381	2254382	2254383	2254384
Aluminum	mg/kg	10	10800	14700	10900	14500	13600	14900	13700	13400
Antimony	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	mg/kg	1	8	10	8	9	9	9	7	8
Barium	mg/kg	5	12	77	13	25	80	66	23	19
Beryllium	mg/kg	2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	mg/kg	2	<2	5	<2	3	6	7	2	3
Cadmium	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/kg	2	14	22	15	19	20	22	19	19
Cobalt	mg/kg	1	5	12	5	12	12	12	12	5
Copper	mg/kg	2	6	19	6	17	19	26	15	7
Iron	mg/kg	50	23100	25500	21100	22900	21200	24300	21800	27800
Lead	mg/kg	0.5	8.8	9.0	8.0	8.2	7.4	186	7.9	7.3
Lithium	mg/kg	5	15	30	19	26	32	31	25	22
Manganese	mg/kg	2	188	711	176	599	644	714	594	168
Molybdenum	mg/kg	2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	mg/kg	2	10	28	12	21	27	28	20	15
Selenium	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	mg/kg	5	<5	20	<5	5	20	22	5	<5
Thallium	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	mg/kg	2	3	3	3	3	3	3	3	3
Uranium	mg/kg	0.1	0.3	0.4	0.3	0.4	0.4	0.4	0.4	0.3
Vanadium	mg/kg	2	28	24	24	21	22	24	20	29
Zinc	mg/kg	5	24	60	26	49	61	58	45	32

Certified By:

Marta Manta

ATTENTION TO: Alan Parker

SAMPLED BY:

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

							O, IIII EEB B	••
				Av	ailable Met	als in Soil		
DATE RECEIVED: 2021-03-23								DATE REPORTED: 2022-04-07
				S5551-21MW06-	S5551-21MW06-	S5551-21MW02-	S5551-21MW02-	
		SAMPLE DES	CRIPTION:	21SS-08	21SS-09	21SS-01	21SS-08	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2021-03-22	2021-03-22	2021-03-22	2021-03-22	
Parameter	Unit	G/S	RDL	2254461	2254462	2254468	2254478	
Aluminum	mg/kg		10	14900	12400	9990	14300	
Antimony	mg/kg		1	<1	<1	<1	<1	
Arsenic	mg/kg		1	9	9	8	7	
Barium	mg/kg		5	73	18	24	71	
Beryllium	mg/kg		2	<2	<2	<2	<2	
Boron	mg/kg		2	6	3	3	5	
Cadmium	mg/kg		0.3	<0.3	<0.3	<0.3	<0.3	
Chromium	mg/kg		2	57	18	16	22	
Cobalt	mg/kg		1	13	5	5	15	
Copper	mg/kg		2	24	7	9	20	
Iron	mg/kg		50	23600	23600	15300	23500	
Lead	mg/kg		0.5	7.3	7.7	11.0	6.9	
Lithium	mg/kg		5	32	19	16	31	
Manganese	mg/kg		2	674	170	215	630	
Molybdenum	mg/kg		2	6	<2	<2	<2	
Nickel	mg/kg		2	38	13	13	31	
Selenium	mg/kg		1	<1	<1	<1	<1	
Silver	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	
Strontium	mg/kg		5	26	<5	14	21	
Thallium	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	
Tin	mg/kg		2	3	3	3	3	
Uranium	mg/kg		0.1	0.5	0.3	0.4	0.6	
Vanadium	mg/kg		2	23	28	19	24	
Zinc	mg/kg		5	62	29	31	66	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2254220-2254478 Results are based on the dry weight of the sample.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

Marta Manta

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Grain Size Analysis - Coarse/Fine Classification

DATE RECEIVED: 2021-03-23	3					DATE REPORTED: 2022-0
				S5551-21BH01-	S5551-21MW06-	
	SA	MPLE DES	CRIPTION:	06	21SS-06	
		SAM	PLE TYPE:	Soil	Soil	
		DATE	SAMPLED:	2021-03-22	2021-03-22	
Parameter	Unit	G/S	RDL	2254347	2254459	
Particles >75um	%		1	35.8	34.4	
Classification	Coarse/Fine			Fine	Fine	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

Marta Manta

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

CCME Petroleum Hydrocarbon F1 - F4 in Soil - Field Preserved

DATE RECEIVED: 2021-03-23

		S5551-21BH01-	S5551-21BH04-	S5551-21BH04-	S5551-21MW06-	S5551-21MW02	-
	SAMPLE DESCRIPTION:	04	05	08	21SS-03	21SS-03	
	SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	
	DATE SAMPLED:	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	
Unit	G/S RDL	2254331	2254381	2254382	2254386	2254470	
µg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
µg/g	0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
µg/g	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	
µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
µg/g	10	<10	<10	<10	<10	<10	
µg/g	10	<10	<10	<10	<10	<10	
µg/g	10	<10	<10	<10	<10	<10	
µg/g	50	<50	<50	<50	<50	<50	
µg/g	50	<50	<50	<50	<50	<50	
µg/g	50	N/A	N/A	N/A	N/A	N/A	
Unit	Acceptable Limits						
%	50-140	115	128	129	121	113	
	μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9	SAMPLE TYPE: DATE SAMPLED: DATE SAMPLED: Unit G / S RDL µg/g 0.02 µg/g 0.05 µg/g 0.05 µg/g 0.05 µg/g 10 µg/g 10 µg/g 50 µg/g 50	SAMPLE DESCRIPTION: 04 SAMPLE TYPE: Soil DATE SAMPLED: 2021-03-22 Unit G / S RDL 2254331 µg/g 0.02 <0.02	SAMPLE DESCRIPTION: 04 05 SAMPLE TYPE: Soil Soil DATE SAMPLED: 2021-03-22 2021-03-22 Unit G / S RDL 2254331 2254381 µg/g 0.02 <0.02	SAMPLE DESCRIPTION: 04 05 08 SAMPLE TYPE: Soil Soil Soil DATE SAMPLED: 2021-03-22 2021-03-22 2021-03-22 Unit G / S RDL 2254331 2254381 2254382 µg/g 0.02 <0.02	SAMPLE DESCRIPTION: 04 05 08 21SS-03 SAMPLE TYPE: Soil Soil Soil Soil Soil DATE SAMPLED: 2021-03-22 2021-03-22 2021-03-22 2021-03-22 2021-03-22 Unit G / S RDL 2254331 2254381 2254382 2254386 µg/g 0.02 <0.02	SAMPLE DESCRIPTION: 04 05 08 21SS-03 21SS-03 SAMPLE TYPE: Soil 2021-03-22

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2254331-2254470 Results are based on sample dry weight.

Xylene(Total)and C6-C10(F1 minus BTEX) are calculated parameters. The calculated parameter is non-accredited. The component parameters of the calculation are accredited.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Analysis performed at AGAT Halifax (unless marked by *)

amy

DATE REPORTED: 2022-04-07

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

				Moist	ure					
DATE RECEIVED: 2021-03-23								DATE REPORT	ED: 2022-04-07	
			S5551-21BH0	1- S5551-21BH01-	- S5551-21BH01-	S5551-21BH04-	S5551-21BH04-	S5551-21BH04-	S5551-21BH04-	S5551-21MW06
		SAMPLE DESCRIPT	ION: 01	04	09	01	05	08	09	21SS-01
		SAMPLE T	YPE: Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAMP	LED: 2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22
Parameter	Unit	G/S RE	DL 2254220	2254331	2254356	2254375	2254381	2254382	2254383	2254384
% Moisture	%	0.	5 20	18	25	14	11	11	16	23
			S5551-21MW0	6- S5551-21MW02	- S5551-21MW02	-				
		SAMPLE DESCRIPT	ION: 21SS-03	21SS-01	21SS-03					
		SAMPLE T	YPE: Soil	Soil	Soil					
		DATE SAMP	LED: 2021-03-22	2021-03-22	2021-03-22					
Parameter	Unit	G / S RE	DL 2254386	2254468	2254470					
% Moisture	%	0.	5 13	16	13					
% Moisture	%	0.	5 13	16	13					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Halifax (unless marked by *)

my Huj

AGAT WORK ORDER: 21X725158 PROJECT: 680449

Polycyclic Aromatic Hydrocarbons in Soil

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Polycyclic Aromatic Hydrocarbons in Soli													
DATE RECEIVED: 2021-03-23 DATE REPORTED: 2022-04-07													
			S5551-21BH01-	S5551-21BH01-	S5551-21BH04-	S5551-21BH04-	S5551-21MW06	- S5551-21MW02-					
	S	SAMPLE DESCRIPTION:	01	09	01	09	21SS-01	21SS-01					
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil					
		DATE SAMPLED:	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22					
Parameter	Unit	G/S RDL	2254220	2254356	2254375	2254383	2254384	2254468					
1-Methylnaphthalene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05					
2-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					
Acenaphthene	mg/kg	0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671					
Acenaphthylene	mg/kg	0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004					
Acridine	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05					
Anthracene	mg/kg	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03					
Benzo(a)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					
Benzo(a)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					
Benzo(b)fluoranthene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05					
Benzo(j+k)fluoranthene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05					
Benzo(e)pyrene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05					
Benzo(ghi)perylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					
Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					
Dibenzo(a,h)anthracene	mg/kg	0.006	< 0.006	<0.006	<0.006	<0.006	<0.006	<0.006					
Fluoranthene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05					
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					
ndeno(1,2,3)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					
Perylene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05					
Phenanthrene	mg/kg	0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03					
Pyrene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05					
Quinoline	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05					
Surrogate	Unit	Acceptable Limits											
Naphthalene-d8	%	50-140	73	77	82	80	81	80					
Terphenyl-d14	%	50-140	78	84	83	88	85	90					
Pyrene-d10 (%)	%	50-140	68	72	73	74	74	75					

my Huj

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Polycyclic Aromatic Hydrocarbons in Soil

DATE RECEIVED: 2021-03-23

 Comments:
 RDL - Reported Detection Limit;
 G / S - Guideline / Standard

 2254220-2254468
 Results are based on the dry weight of the soil.

Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Benzo(j+k)fluoranthene is not an accredited parameter.

Analysis performed at AGAT Halifax (unless marked by *)

my Huj

DATE REPORTED: 2022-04-07

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Volatile Organic Compounds in Soil - Field Preserved DATE RECEIVED: 2021-03-23 **DATE REPORTED: 2022-04-07** S5551-21BH01- S5551-21BH04- S5551-21BH04- S5551-21MW06- S5551-21MW02-SAMPLE DESCRIPTION: 04 05 08 21SS-03 21SS-03 SAMPLE TYPE: Soil Soil Soil Soil Soil DATE SAMPLED: 2021-03-22 2021-03-22 2021-03-22 2021-03-22 2021-03-22 G/S 2254382 2254470 Parameter Unit RDL 2254331 2254381 2254386 Chloromethane 100 <100 <100 <100 <100 <100 ug/kg Vinyl Chloride 20 <20 <20 <20 <20 <20 ug/kg Bromomethane 50 <50 <50 <50 <50 <50 ug/kg 100 Chloroethane ug/kg <100 <100 <100 <100 <100 Trichlorofluoromethane (FREON 11) 100 <100 <100 <100 <100 <100 ug/kg 500 <500 <500 Acetone ug/kg <500 <500 <500 50 1,1-Dichloroethylene ug/kg <50 <50 <50 <50 <50 Methylene Chloride 100 <100 <100 <100 <100 <100 ug/kg (Dichloromethane) trans-1,2-Dichloroethylene 80 <80 <80 <80 <80 ug/kg <80 100 <100 <100 <100 1,1-Dichloroethane ug/kg <100 <100 cis-1,2-Dichloroethylene 100 ug/kg <100 <100 <100 <100 <100 Chloroform ug/kg 50 <50 <50 <50 <50 <50 <100 1.2-Dichloroethane ug/kg 100 <100 <100 <100 <100 1,1,1-Trichloroethane 30 <30 <30 <30 <30 ug/kg <30 Carbon Tetrachloride ug/kg 50 <50 <50 <50 <50 <50 Benzene 6.8 <6.8 <6.8 <6.8 <6.8 <6.8 ug/kg 1,2-Dichloropropane 50 <50 <50 <50 <50 <50 ug/kg Trichloroethylene ug/kg 10 <10 <10 <10 <10 <10 Bromodichloromethane 100 <100 <100 <100 <100 <100 ug/kg 100 <100 <100 <100 <100 cis-1,3-Dichloropropene <100 ug/kg trans-1,3-Dichloropropene ug/kg 100 <100 <100 <100 <100 <100 30 <30 <30 <30 <30 <30 1,1,2-Trichloroethane ug/kg Toluene ug/kg 80 <80 <80 <80 <80 <80 2-Hexanone ug/kg 500 <500 <500 <500 <500 <500 Dibromochloromethane 100 <100 <100 <100 <100 <100 ug/kg 1.2-Dibromoethane ug/kg 50 <50 <50 <50 <50 <50 <100 <100 <100 <100 Tetrachloroethylene ug/kg 100 <100 100 <100 1,1,1,2-Tetrachloroethane <100 <100 <100 <100 µg/kg

any Huj

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Volatile Organic Compounds in Soil - Field Preserved

DATE RECEIVED: 2021-03-23								DATE REPORTED: 2022-04-07
			S5551-21BH01-	S5551-21BH04-	S5551-21BH04-	S5551-21MW06-	S5551-21MW02	2-
		SAMPLE DESCRIPTION	04	05	08	21SS-03	21SS-03	
		SAMPLE TYPE	Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLED	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	
Parameter	Unit	G/S RDL	2254331	2254381	2254382	2254386	2254470	
Chlorobenzene	ug/kg	50	<50	<50	<50	<50	<50	
Ethylbenzene	ug/kg	18	<18	<18	<18	<18	<18	
m,p-Xylene	ug/kg	100	<100	<100	<100	<100	<100	
Bromoform	ug/kg	100	<100	<100	<100	<100	<100	
Styrene	ug/kg	100	<100	<100	<100	<100	<100	
1,1,2,2-Tetrachloroethane	ug/kg	50	<50	<50	<50	<50	<50	
o-Xylene	ug/kg	100	<100	<100	<100	<100	<100	
1,3-Dichlorobenzene	ug/kg	50	<50	<50	<50	<50	<50	
1,4-Dichlorobenzene	ug/kg	50	<50	<50	<50	<50	<50	
1,2-Dichlorobenzene	ug/kg	50	<50	<50	<50	<50	<50	
Surrogate	Unit	Acceptable Limits						
Toluene-d8	%	60-140	98	96	97	99	99	
4-Bromofluorobenzene	%	60-140	88	90	87	87	88	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2254331-2254470 Results are based on the dry weight of the soil.

Analysis performed at AGAT Halifax (unless marked by *)

my Huj

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

r endomated compounds (son)													
DATE RECEIVED: 2021-03-23 DATE REPORTED: 2022-04-07													
				S5551-21BH01-	S5551-21BH01-	S5551-21BH01-	S5551-21BH04-	S5551-21BH04-	S5551-21MW06-	S5551-21MW06-	S5551-21MW06-		
		SAMPLE DESC	RIPTION:	01	08	09	01	08	21SS-01	21SS-09	21Grab-01		
		SAMP	LE TYPE:	Soil									
		DATE S	AMPLED:	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22		
Parameter	Unit	G/S	RDL	2254220	2254353	2254356	2254375	2254382	2254384	2254462	2254463		
Perfluorobutanoic Acid PFBA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluoropentanoic Acid PFPeA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorohexanoic Acid PFHxA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluoroheptanoic Acid PFHpA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorooctanoic Acid PFOA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorononanoic Acid PFNA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorodecanoic Acid PFDA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluoroundecanoic Acid PFUnA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorododecanoic Acid PFDoA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorotridecanoic Acid PFTrDA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorotetradecanoic Acid PFTeDA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorobutanesulfonic Acid PFBS	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorohexasulfonic Acid PFHxS	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluoroheptanesulfonate PFHpS	ug/Kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorooctasulfonic Acid PFOS	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorooctane sulfonamide PFOSA	ug/Kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Perfluorodecanesulfonic Acid PFDS	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
N-Methylperfluorosulfonamideacetic N-MeFOSAA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		

Perfluorinated Compounds (soil)

Olivie Lachance 2006.083 2005

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

					1 (,				
DATE RECEIVED: 2021-03-23		DATE REPORTED: 2022-04-07								
			S5551-21BH01-	S5551-21BH01-	S5551-21BH01-	S5551-21BH04-	S5551-21BH04-	S5551-21MW06-	S5551-21MW06-	S5551-21MW06
		SAMPLE DESCRIPTION:	01	08	09	01	08	21SS-01	21SS-09	21Grab-01
		SAMPLE TYPE:	Soil	Soil						
		DATE SAMPLED:	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22	2021-03-22
Surrogate	Unit	Acceptable Limits	2254220	2254353	2254356	2254375	2254382	2254384	2254462	2254463
Perfluorobutanoic Acid-13C4	%	30-140	57	53	47	43	62	52	56	58
Perfluoropentanoic Acid-13C5	%	30-140	65	56	50	50	69	57	63	62
Perfluorohexanoic Acid-13C5	%	30-140	57	55	49	42	61	52	57	56
Perfluoroheptanoic Acid-13C4	%	30-140	66	61	50	47	65	52	62	64
Perfluorooctanoic Acid-13C8	%	30-140	71	49	52	48	66	62	70	80
Perfluorononanoic Acid-13C9	%	30-140	66	53	54	45	64	61	67	80
Perfluorodecanoic Acid-13C6	%	30-140	41	39	58	40	52	43	61	66
Perfluoroundecanoic Acid-13C7	%	30-140	34	38	53	35	38	48	62	44
Perfluorododecanoic Acid-13C2	%	30-140	41	27	46	28	36	39	40	42
Perfluorotetradecanoic Acid-13C2	%	30-140	44	19	36	15	34	25	38	25
Perfluorobutanesulfonic Acid-13C3	%	30-140	57	56	52	52	61	63	60	84
Perfluorohexasulfonic Acid-13C3	%	30-140	58	54	46	46	55	62	60	72
Perfluorooctasulfonic Acid-13C8	%	30-140	59	56	45	58	71	58	59	68
Perfluorooctane sulfonamide -13C8	%	30-140	40	34	41	27	30	22	34	22
N-Ethylperfluorosulfonamideacetic- D5	%	30-140	51	40	44	35	41	53	62	46

Perfluorinated Compounds (soil)

Over Lachange Quier Luclance

ATTENTION TO: Alan Parker

SAMPLED BY:

AGAT WORK ORDER: 21X725158 PROJECT: 680449

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

			Perflu	orinated Compo	ounds (soil)
DATE RECEIVED: 2021-03-23					DATE REPORTED: 2022-04-07
			S5551-21MW02	2- S5551-21MW02-	
		SAMPLE DESCRIPTION	: 21SS-01	21SS-08	
		SAMPLE TYPE	: Soil	Soil	
		DATE SAMPLED	: 2021-03-22	2021-03-22	
Parameter	Unit	G/S RDL	2254468	2254478	
Perfluorobutanoic Acid PFBA	ug/kg	1.0	<1.0	<1.0	
Perfluoropentanoic Acid PFPeA	ug/kg	1.0	<1.0	<1.0	
Perfluorohexanoic Acid PFHxA	ug/kg	1.0	<1.0	<1.0	
Perfluoroheptanoic Acid PFHpA	ug/kg	1.0	<1.0	<1.0	
Perfluorooctanoic Acid PFOA	ug/kg	1.0	<1.0	<1.0	
Perfluorononanoic Acid PFNA	ug/kg	1.0	<1.0	<1.0	
Perfluorodecanoic Acid PFDA	ug/kg	1.0	<1.0	<1.0	
Perfluoroundecanoic Acid PFUnA	ug/kg	1.0	<1.0	<1.0	
Perfluorododecanoic Acid PFDoA	ug/kg	1.0	<1.0	<1.0	
Perfluorotridecanoic Acid PFTrDA	ug/kg	1.0	<1.0	<1.0	
Perfluorotetradecanoic Acid PFTeDA	ug/kg	1.0	<1.0	<1.0	
Perfluorobutanesulfonic Acid PFBS	ug/kg	1.0	<1.0	<1.0	
Perfluorohexasulfonic Acid PFHxS	ug/kg	1.0	<1.0	<1.0	
Perfluoroheptanesulfonate PFHpS	ug/Kg	1.0	<1.0	<1.0	
Perfluorooctasulfonic Acid PFOS	ug/kg	1.0	<1.0	<1.0	
Perfluorooctane sulfonamide PFOSA	ug/Kg	1.0	<1.0	<1.0	
Perfluorodecanesulfonic Acid PFDS	ug/kg	1.0	<1.0	<1.0	
N-Methylperfluorosulfonamideacetic N-MeFOSAA	ug/kg	1.0	<1.0	<1.0	
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	ug/kg	1.0	<1.0	<1.0	

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

				DATE REPORTED: 2022-04-07
	Ś	65551-21MW02-	S5551-21MW02-	
	SAMPLE DESCRIPTION:	21SS-01	21SS-08	
	SAMPLE TYPE:	Soil	Soil	
	DATE SAMPLED:	2021-03-22	2021-03-22	
Unit	Acceptable Limits	2254468	2254478	
%	30-140	58	49	
%	30-140	64	53	
%	30-140	58	43	
%	30-140	60	47	
%	30-140	56	47	
%	30-140	55	50	
%	30-140	56	38	
%	30-140	40	41	
%	30-140	32	26	
%	30-140	30	25	
%	30-140	50	44	
%	30-140	53	37	
%	30-140	46	40	
%	30-140	32	24	
%	30-140	40	32	
	% % % % % % % %	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: DATE SAMPLED: Unit Acceptable Limits % 30-140	Sample Description: 21SS-01 SAMPLE DESCRIPTION: 21SS-01 SAMPLE TYPE: Soil DATE SAMPLED: 2021-03-22 Unit Acceptable Limits 2254468 % 30-140 58 % 30-140 64 % 30-140 58 % 30-140 56 % 30-140 56 % 30-140 56 % 30-140 56 % 30-140 56 % 30-140 56 % 30-140 30 % 30-140 50 % 30-140 50 % 30-140 50 % 30-140 53 % 30-140 53 % 30-140 53 % 30-140 46 % 30-140 32 % 30-140 32 % 30-140 32 <	Sample Description: 21SS-01 21SS-08 SAMPLE DESCRIPTION: 21SS-01 21SS-08 SAMPLE TYPE: Soil Soil DATE SAMPLED: 2021-03-22 2021-03-22 Unit Acceptable Limits 2254468 2254478 % 30-140 58 49 % 30-140 64 53 % 30-140 60 47 % 30-140 56 47 % 30-140 56 47 % 30-140 56 47 % 30-140 56 38 % 30-140 56 38 % 30-140 56 38 % 30-140 30 25 % 30-140 30 25 % 30-140 50 44 % 30-140 53 37 % 30-140 53 37 % 30-140 46

Perfluorinated Compounds (soil)

Certified By:

AGAT WORK ORDER: 21X725158 PROJECT: 680449 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Perfluorinated Compounds (soil)

DATE RECE	VED: 2021-03-23	DATE REPORTED: 2022-04-07
Comments:	RDL - Reported Detection Limit; G / S - Guideline / Standard	
2254220	The results were corrected based on the surrogate percent recoveries.	
2254353	The results were corrected based on the surrogate percent recoveries.	
	Some surrogate not within acceptance limits. Surrogate recovery was low bias, therefore results could potentially be biased high due to surro	ogate correction.
2254356	The results were corrected based on the surrogate percent recoveries.	
2254375	The results were corrected based on the surrogate percent recoveries.	
	Some surrogate not within acceptance limits. Surrogate recovery was low bias, therefore results could potentially be biased high due to surro	ogate correction.
2254382	The results were corrected based on the surrogate percent recoveries.	
2254384	The results were corrected based on the surrogate percent recoveries.	
	Some surrogate not within acceptance limits. Surrogate recovery was low bias, therefore results could potentially be biased high due to surro	ogate correction.
2254462	The results were corrected based on the surrogate percent recoveries.	
2254463	The results were corrected based on the surrogate percent recoveries.	
	Some surrogate not within acceptance limits. Surrogate recovery was low bias, therefore results could potentially be biased high due to surro	ogate correction.
2254468	The results were corrected based on the surrogate percent recoveries.	
2254478	The results were corrected based on the surrogate percent recoveries.	
	Some surregets not within acceptance limits. Surregets receiver, was low bias, therefore results could actentially be biased biab due to surr	anto correction

Some surrogate not within acceptance limits. Surrogate recovery was low bias, therefore results could potentially be biased high due to surrogate correction. Analysis performed at AGAT Montréal (unless marked by *)

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X725158

ATTENTION TO: Alan Parker

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Apr 07, 2022			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable nits	Recoverv	Acceptable Limits		Recovery		eptable mits
	AWETER Batch Id Dup #1 Dup #2 RFD				Value	Lower	Upper		Lower	Upper	,	Lower	Upper		
Available Metals in Soil															
Aluminum	2254220 2	2254220	10800	11100	2.7%	< 10	100%	80%	120%	108%	80%	120%	NA	70%	130%
Antimony	2254220 2	2254220	<1	<1	NA	< 1	100%	80%	120%	102%	80%	120%	NA	70%	130%
Arsenic	2254220 2	2254220	8	8	4.0%	< 1	100%	80%	120%	104%	80%	120%	NA	70%	130%
Barium	2254220 2	2254220	12	12	NA	< 5	103%	80%	120%	109%	80%	120%	115%	70%	130%
Beryllium	2254220 2	2254220	<2	<2	NA	< 2	101%	80%	120%	111%	80%	120%	120%	70%	130%
Boron	2254220 2	2254220	<2	2	NA	< 2	98%	80%	120%	108%	80%	120%	110%	70%	130%
Cadmium	2254220 2	2254220	<0.3	<0.3	NA	< 0.3	102%	80%	120%	96%	80%	120%	101%	70%	130%
Chromium	2254220 2	2254220	14	14	1.3%	< 2	98%	80%	120%	95%	80%	120%	NA	70%	130%
Cobalt	2254220 2	2254220	5	5	NA	< 1	98%	80%	120%	95%	80%	120%	126%	70%	130%
Copper	2254220 2	2254220	6	6	NA	< 2	101%	80%	120%	99%	80%	120%	123%	70%	130%
ron	2254220 2	2254220	23100	23800	3.0%	< 50	99%	80%	120%	97%	80%	120%	97%	70%	130%
₋ead	2254220 2	2254220	8.8	13.3	NA	< 0.5	99%	80%	120%	105%	80%	120%	90%	70%	130%
Lithium	2254220 2	2254220	15	18	NA	< 5	93%	70%	130%	103%	70%	130%	NA	70%	130%
Manganese	2254220 2	2254220	188	201	6.7%	< 2	101%	80%	120%	96%	80%	120%	103%	70%	130%
Molybdenum	2254220 2	2254220	<2	<2	NA	< 2	96%	80%	120%	93%	80%	120%	96%	70%	130%
Nickel	2254220 2	2254220	10	11	1.8%	< 2	100%	80%	120%	98%	80%	120%	107%	70%	130%
Selenium	2254220 2	2254220	<1	<1	NA	< 1	98%	80%	120%	97%	80%	120%	89%	70%	130%
Silver	2254220 2	2254220	<0.5	<0.5	NA	< 0.5	95%	80%	120%	95%	80%	120%	92%	70%	130%
Strontium	2254220 2	2254220	<5	<5	NA	< 5	90%	80%	120%	89%	80%	120%	127%	70%	130%
Thallium .	2254220 2	2254220	<0.1	<0.1	NA	< 0.1	95%	80%	120%	101%	80%	120%	NA	70%	130%
īn	2254220 2	2254220	3	3	NA	< 2	103%	80%	120%	107%	80%	120%	114%	70%	130%
Jranium	2254220 2	2254220	0.3	0.3	NA	< 0.1	100%	80%	120%	107%	80%	120%	78%	70%	130%
/anadium	2254220 2	2254220	28	27	3.3%	< 2	98%	80%	120%	96%	80%	120%	NA	70%	130%
Zinc	2254220 2	2254220	24	23	NA	< 5	100%	80%	120%	96%	80%	120%	116%	70%	130%

Certified By:

Marta Manta

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 16 of 25

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X725158 ATTENTION TO: Alan Parker

SAMPLED BY:

Trace Organics Analysis

			iiuu		Jan	0070	aryo	.0							
RPT Date: Apr 07, 2022	PT Date: Apr 07, 2022						REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	1 1 1 1	ptable nits	Recovery		eptable mits
		lù					value	Lower	Upper	-	Lower	Upper	er	Lower	Upper
Polycyclic Aromatic Hydrocarbo	ons in Soil														
1-Methylnaphthalene	1	2254220	< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	90%	50%	140%	94%	50%	140%
2-Methylnaphthalene	1	2254220	< 0.01	< 0.01	NA	< 0.01	105%	50%	140%	87%	50%	140%	85%	50%	140%
Acenaphthene	1	2254220	< 0.00671	< 0.00671	NA	< 0.00671	111%	50%	140%	92%	50%	140%	93%	50%	140%
Acenaphthylene	1	2254220	< 0.004	< 0.004	NA	< 0.004	93%	50%	140%	74%	50%	140%	79%	50%	140%
Acridine	1	2254220	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	90%	50%	140%	86%	50%	140%
Anthracene	1	2254220	< 0.03	< 0.03	NA	< 0.03	85%	50%	140%	68%	50%	140%	78%	50%	140%
Benzo(a)anthracene	1	2254220	< 0.01	< 0.01	NA	< 0.01	76%	50%	140%	80%	50%	140%	78%	50%	140%
Benzo(a)pyrene	1	2254220	< 0.01	< 0.01	NA	< 0.01	80%	50%	140%	72%	50%	140%	81%	50%	140%
Benzo(b)fluoranthene	1	2254220	< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	98%	50%	140%	88%	50%	140%
Benzo(j+k)fluoranthene	1	2254220	< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	75%	50%	140%	100%	50%	140%
Benzo(e)pyrene	1	2254220	< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	93%	50%	140%	90%	50%	140%
Benzo(ghi)perylene	1	2254220	< 0.01	< 0.01	NA	< 0.01	61%	50%	140%	61%	50%	140%	73%	50%	140%
Chrysene	1	2254220	< 0.01	< 0.01	NA	< 0.01	137%	50%	140%	90%	50%	140%	90%	50%	140%
Dibenzo(a,h)anthracene	1	2254220	< 0.006	< 0.006	NA	< 0.006	65%	50%	140%	59%	50%	140%	79%	50%	140%
Fluoranthene	1	2254220	< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	80%	50%	140%	84%	50%	140%
Fluorene	1	2254220	< 0.01	< 0.01	NA	< 0.01	101%	50%	140%	88%	50%	140%	94%	50%	140%
Indeno(1,2,3)pyrene	1	2254220	< 0.01	< 0.01	NA	< 0.01	81%	50%	140%	90%	50%	140%	119%	50%	140%
Naphthalene	1	2254220	< 0.01	< 0.01	NA	< 0.01	110%	50%	140%	85%	50%	140%	88%	50%	140%
Perylene	1	2254220	< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	97%	50%	140%	100%	50%	140%
Phenanthrene	1	2254220	< 0.03	< 0.03	NA	< 0.03	100%	50%	140%	85%	50%	140%	92%	50%	140%
Pyrene	1	2254220	< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	80%	50%	140%	83%	50%	140%
Quinoline	1	2254220	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	81%	50%	140%	96%	50%	140%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Volatile Organic	Compounds	in	Soil - F	-ield	Preserved
volutile organie	Compounds		0011 1	iciu	110301000

Chloromethane	2254331 2254331	<100	<100	NA	< 100	77%	70%	130%	100%	60%	140%	82%	60%	140%	
Vinyl Chloride	2254331 2254331	<20	<20	NA	< 20	83%	50%	140%	86%	60%	130%	79%	50%	140%	
Bromomethane	2254331 2254331	<50	<50	NA	< 50	122%	50%	140%	139%	60%	130%	75%	50%	140%	
Chloroethane	2254331 2254331	<100	<100	NA	< 100	90%	50%	140%	73%	60%	130%	92%	50%	140%	
Trichlorofluoromethane (FREON 11)	2254331 2254331	<100	<100	NA	< 100	106%	50%	140%	136%	60%	130%	113%	50%	140%	
Acetone	2254331 2254331	<500	<500	NA	< 500	86%	50%	140%	109%	50%	140%	89%	50%	140%	
1,1-Dichloroethylene	2254331 2254331	<50	<50	NA	< 50	100%	50%	140%	123%	60%	130%	104%	50%	140%	
Methylene Chloride (Dichloromethane)	2254331 2254331	<100	<100	NA	< 100	101%	50%	140%	117%	60%	130%	100%	50%	140%	
trans-1,2-Dichloroethylene	2254331 2254331	<80	<80	NA	< 80	100%	50%	140%	120%	60%	130%	104%	50%	140%	
1,1-Dichloroethane	2254331 2254331	<100	<100	NA	< 100	101%	50%	140%	115%	60%	130%	103%	50%	140%	
cis-1,2-Dichloroethylene	2254331 2254331	<100	<100	NA	< 100	102%	50%	140%	117%	60%	130%	105%	50%	140%	
Chloroform	2254331 2254331	<50	<50	NA	< 50	104%	50%	140%	149%	60%	130%	106%	50%	140%	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 17 of 25

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X725158 ATTENTION TO: Alan Parker SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Apr 07, 2022				DUPLICATE			REFEREN	ENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
							value	Lower	Upper		Lower	Upper		Lower	Upper
1,2-Dichloroethane	2254331	2254331	<100	<100	NA	< 100	91%	50%	140%	100%	60%	130%	92%	50%	140%
1,1,1-Trichloroethane	2254331	2254331	<30	<30	NA	< 30	97%	50%	140%	117%	60%	130%	101%	50%	140%
Carbon Tetrachloride	2254331	2254331	<50	<50	NA	< 50	98%	50%	140%	123%	60%	130%	103%	50%	140%
Benzene	2254331	2254331	<6.8	<6.8	NA	< 6.8	99%	70%	130%	117%	60%	140%	100%	60%	140%
1,2-Dichloropropane	2254331	2254331	<50	<50	NA	< 50	96%	50%	140%	105%	60%	130%	98%	50%	140%
Trichloroethylene	2254331	2254331	<10	<10	NA	< 10	101%	50%	140%	126%	60%	130%	108%	50%	140%
Bromodichloromethane	2254331	2254331	<100	<100	NA	< 100	95%	50%	140%	103%	60%	130%	93%	50%	140%
cis-1,3-Dichloropropene	2254331	2254331	<100	<100	NA	< 100	94%	50%	140%	103%	60%	130%	94%	50%	140%
trans-1,3-Dichloropropene	2254331	2254331	<100	<100	NA	< 100	85%	50%	140%	98%	60%	130%	89%	50%	140%
1,1,2-Trichloroethane	2254331	2254331	<30	<30	NA	< 30	92%	50%	140%	101%	60%	130%	90%	50%	140%
Toluene	2254331	2254331	<80	<80	NA	< 80	85%	70%	130%	117%	60%	140%	93%	60%	140%
2-Hexanone	2254331	2254331	<500	<500	NA	< 500	82%	50%	140%	65%	50%	140%	75%	50%	140%
Dibromochloromethane	2254331	2254331	<100	<100	NA	< 100	94%	50%	140%	105%	60%	130%	93%	50%	140%
1,2-Dibromoethane	2254331	2254331	<50	<50	NA	< 50	93%	50%	140%	100%	60%	130%	92%	50%	140%
Tetrachloroethylene	2254331	2254331	<100	<100	NA	< 100	94%	50%	140%	140%	60%	130%	108%	50%	140%
1,1,1,2-Tetrachloroethane	2254331	2254331	<100	<100	NA	< 100	92%	50%	140%	108%	60%	130%	95%	50%	140%
Chlorobenzene	2254331	2254331	<50	<50	NA	< 50	91%	50%	140%	115%	60%	130%	93%	50%	140%
Ethylbenzene	2254331	2254331	<18	<18	NA	< 18	83%	70%	130%	118%	60%	140%	91%	60%	140%
m,p-Xylene	2254331	2254331	<100	<100	NA	< 100	78%	70%	130%	110%	60%	140%	84%	60%	140%
Bromoform	2254331	2254331	<100	<100	NA	< 100	86%	50%	140%	89%	60%	130%	82%	50%	140%
Styrene	2254331	2254331	<100	<100	NA	< 100	78%	50%	140%	97%	60%	130%	79%	50%	140%
1,1,2,2-Tetrachloroethane	2254331	2254331	<50	<50	NA	< 50	94%	50%	140%	100%	60%	130%	92%	50%	140%
o-Xylene	2254331	2254331	<100	<100	NA	< 100	82%	70%	130%	108%	60%	140%	85%	60%	140%
1,3-Dichlorobenzene	2254331	2254331	<50	<50	NA	< 50	80%	50%	140%	80%	60%	130%	78%	50%	140%
1,4-Dichlorobenzene	2254331	2254331	<50	<50	NA	< 50	92%	50%	140%	74%	60%	130%	84%	50%	140%
1,2-Dichlorobenzene	2254331	2254331	<50	<50	NA	< 50	94%	50%	140%	88%	60%	130%	90%	50%	140%
,															

Comments: Blank spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

CCME Petroleum Hydrocarbon F1 - F4 in Soil - Field Preserved															
Benzene	1	2237962	< 0.02	< 0.02	NA	< 0.02	107%	60%	140%	120%	60%	140%			
Toluene	1	2237962	< 0.08	< 0.08	NA	< 0.08	106%	60%	140%	120%	60%	140%			
Ethylbenzene	1	2237962	< 0.05	< 0.05	NA	< 0.05	106%	60%	140%	120%	60%	140%			
Xylenes (Total)	1	2237962	0.43	0.42	2.4%	< 0.05	107%	60%	140%	120%	60%	140%			
C6 - C10 (F1 minus BTEX)	1	2237962	38	37	NA	< 10	103%	60%	140%	99%	60%	140%	75%	60%	140%
>C10 - C16 (F2)	1	2254331	< 10	< 10	NA	< 10	97%	60%	140%	85%	60%	140%	91%	60%	140%
>C16 - C34 (F3)	1	2254331	< 50	< 50	NA	< 50	93%	60%	140%	85%	60%	140%	91%	60%	140%
>C34 - C50 (F4)	1	2254331	< 50	< 50	NA	< 50	101%	60%	140%	85%	60%	140%	91%	60%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 18 of 25

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X725158

ATTENTION TO: Alan Parker

SAMPLED BY:

Trace Organics Analysis (Continued)

			0				•			,					
RPT Date: Apr 07, 2022				DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Acceptable Limits		Recoverv	Acceptable Limits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

my Hu

AGAT QUALITY ASSURANCE REPORT (V1)

Page 19 of 25

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X725158 ATTENTION TO: Alan Parker

SAMPLED BY:

			UI	tra T	race	Anal	ysis								
RPT Date: Apr 07, 2022			C	UPLICATI	E		REFERENCE MATER		TERIAL	L METHOD BLANK SPIKE			MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	A Recovery		ptable nits	Recovery	Acceptable Limits	
		la					value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
Perfluorinated Compounds (soil)															
Perfluorobutanoic Acid PFBA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	93%	60%	140%	102%	60%	140%
Perfluoropentanoic Acid PFPeA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	92%	60%	140%	99%	60%	140%
Perfluorohexanoic Acid PFHxA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	91%	60%	140%	103%	60%	140%
Perfluoroheptanoic Acid PFHpA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	99%	60%	140%	115%	60%	140%
Perfluorooctanoic Acid PFOA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	92%	60%	140%	101%	60%	140%
Perfluorononanoic Acid PFNA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	75%	60%	140%	99%	60%	140%
Perfluorodecanoic Acid PFDA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	113%	60%	140%	90%	60%	140%
Perfluoroundecanoic Acid PFUnA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	84%	60%	140%	73%	60%	140%
Perfluorododecanoic Acid PFDoA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	82%	60%	140%	103%	60%	140%
Perfluorotridecanoic Acid PFTrDA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	138%	60%	140%	107%	60%	140%
Perfluorotetradecanoic Acid PFTeDA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	63%	60%	140%	98%	60%	140%
Perfluorobutanesulfonic Acid PFBS	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	81%	60%	140%	97%	60%	140%
Perfluorohexasulfonic Acid PFHxS	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	94%	60%	140%	94%	60%	140%
Perfluoroheptanesulfonate PFHpS	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	77%	60%	140%	68%	60%	140%
Perfluorooctasulfonic Acid PFOS	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	79%	60%	140%	89%	60%	140%
Perfluorooctane sulfonamide PFOSA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	116%	60%	140%	116%	60%	140%
Perfluorodecanesulfonic Acid PFDS	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	94%	60%	140%	86%	60%	140%
N- Methylperfluorosulfonamideacetic N-MeFOSAA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	74%	60%	140%	81%	60%	140%
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	1	2254468	< 1.0	< 1.0	0.0%	< 1.0	NA	60%	140%	67%	60%	140%	115%	60%	140%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 20 of 25

QC Exceedance

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

AGAT WORK ORDER: 21X725158 ATTENTION TO: Alan Parker

RPT Date: Apr 07, 2022		REFERENC	E MATE	RIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Sample Id	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	1 1 1	eptable mits
				Upper	-	Lower	Upper		Lower	Uppe
Volatile Organic Compounds in Soil - Field Preserved										
Bromomethane	2254331	122%	50%	140%	139%	60%	130%	75%	50%	140%
Trichlorofluoromethane (FREON 11)	2254331	106%	50%	140%	136%	60%	130%	113%	50%	140%
Chloroform	2254331	104%	50%	140%	149%	60%	130%	106%	50%	140%
Tetrachloroethylene	2254331	94%	50%	140%	140%	60%	130%	108%	50%	140%

Comments: Blank spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 21 of 25

Method Summary

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

AGAT WORK ORDER: 21X725158

ATTENTION TO: Alan Parker

11(03201.000443		ATTENTION TO.	
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Aluminum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Antimony	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Arsenic	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Barium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Beryllium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Boron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cadmium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Chromium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cobalt	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Copper	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Iron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Lead	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
Lithium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
Manganese	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Molybdenum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Nickel	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Selenium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Silver	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Strontium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Thallium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Tin	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Uranium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Vanadium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Zinc	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Particles >75um	INOR-121-6031, INOR-121-6034	ASTM D-422-63	Sieve
Classification	INOR-121-6031, INOR-121-6031	Atlantic RBCA	Sieve

Method Summary

CLIENT NAME: SNC Lavalin Inc. PROJECT: 680449

SAMPLING SITE

AGAT WORK ORDER: 21X725158

ATTENTION TO: Alan Parker

PARAMETERAGAT S.O.PLITERATURE REFERENCEANALYTICAL TITrace Organics AnalysisBenzeneVOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSTolueneVOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSEthylbenzeneVOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSXylenes (Total)VOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSC6 - C10 (F1)VOL-120-5015CCME CWS Tier 1GC/MS/FIDC6 - C10 (F1)VOL-120-5015CCME CWS Tier 1GC/FID>C10 - C16 (F2)ORG-120-5102Based on CCME CWS Tier 1GC/FID>C16 - C34 (F3)ORG-120-5102Based on CCME CWS Tier 1GC/FID>C34 - C50 (F4)ORG-120-5102Based on CCME CWS Tier 1GC/FIDGravimetric Heavy Hydrocarbons (F4G)ORG-120-5102CCMEGC/FID% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	ECHNIQUE
BenzeneVOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSTolueneVOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSEthylbenzeneVOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSXylenes (Total)VOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSC6 - C10 (F1)VOL-120-5015CCME CWS Tier 1GC/MS/FIDC6 - C10 (F1 minus BTEX)VOL-120-5015CCME CWS Tier 1GC/MS/FID> C10 - C16 (F2)ORG-120-5102Based on CCME CWS Tier 1GC/FID> C16 - C34 (F3)ORG-120-5102Based on CCME CWS Tier 1GC/FID> C34 - C50 (F4)ORG-120-5102Based on CCME CWS Tier 1GC/FIDGravimetric Heavy Hydrocarbons (F4G)ORG-120-5102Based on CCME CWS Tier 1GC/FIDo-terphenylORG-120-5102CCMEGC/FID% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	
BenzeneVOL-120-5015Laboratories Tier 1(P&T)GC/MSTolueneVOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSEthylbenzeneVOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSXylenes (Total)VOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSC6 - C10 (F1)VOL-120-5015CCME CWS Tier 1GC/MS/FIDC6 - C10 (F1)ORG-120-5102Based on CCME CWS Tier 1GC/FID> C10 - C16 (F2)ORG-120-5102Based on CCME CWS Tier 1GC/FID> C34 - C50 (F4)ORG-120-5102Based on CCME CWS Tier 1GC/FIDGravimetric Heavy Hydrocarbons (F4G)ORG-120-5102Based on CCME CWS Tier 1GRAVIMETRICo-terphenylORG-120-5102CCMEGC/FID% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	
TolueneVOL-120-5015Laboratories Tier 1(P&T)GC/MSEthylbenzeneVOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSXylenes (Total)VOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSC6 - C10 (F1)VOL-120-5015CCME CWS Tier 1GC/MS/FIDC6 - C10 (F1 minus BTEX)VOL-120-5015CCME CWS Tier 1GC/MS/FID>C10 - C16 (F2)ORG-120-5102Based on CCME CWS Tier 1GC/FID>C16 - C34 (F3)ORG-120-5102Based on CCME CWS Tier 1GC/FID>C34 - C50 (F4)ORG-120-5102Based on CCME CWS Tier 1GC/FIDGravimetric Heavy Hydrocarbons (F4G)ORG-120-5102Based on CCME CWS Tier 1GRAVIMETRICo-terphenylORG-120-5102CCMEGC/FID% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	
EtnyibenzeneVOL-120-5015Laboratories Tier 1(P&T)GC/MSXylenes (Total)VOL-120-5015Atlantic RBCA Guidelines for Laboratories Tier 1(P&T)GC/MSC6 - C10 (F1)VOL-120-5015CCME CWS Tier 1GC/MS/FIDC6 - C10 (F1 minus BTEX)VOL-120-5015CCME CWS Tier 1GC/MS/FID>C10 - C16 (F2)ORG-120-5102Based on CCME CWS Tier 1GC/FID>C16 - C34 (F3)ORG-120-5102Based on CCME CWS Tier 1GC/FID>C34 - C50 (F4)ORG-120-5102Based on CCME CWS Tier 1GC/FIDGravimetric Heavy Hydrocarbons (F4G)ORG-120-5102Based on CCME CWS Tier 1GRAVIMETRICo-terphenylORG-120-5102CCMEGC/FID% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	
Xylenes (Total)VOL-120-5015Laboratories Tier 1(P&T)GC/MSC6 - C10 (F1)VOL-120-5015CCME CWS Tier 1GC/MS/FIDC6 - C10 (F1 minus BTEX)VOL-120-5015CCME CWS Tier 1GC/MS/FID>C10 - C16 (F2)ORG-120-5102Based on CCME CWS Tier 1GC/FID>C16 - C34 (F3)ORG-120-5102Based on CCME CWS Tier 1GC/FID>C34 - C50 (F4)ORG-120-5102Based on CCME CWS Tier 1GC/FIDGravimetric Heavy Hydrocarbons (F4G)ORG-120-5102Based on CCME CWS Tier 1GRAVIMETRICo-terphenylORG-120-5102CCMEGC/FID% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	
C6 - C10 (F1 minus BTEX) VOL-120-5015 CCME CWS Tier 1 GC/MS/FID >C10 - C16 (F2) ORG-120-5102 Based on CCME CWS Tier 1 GC/FID >C16 - C34 (F3) ORG-120-5102 Based on CCME CWS Tier 1 GC/FID >C34 - C50 (F4) ORG-120-5102 Based on CCME CWS Tier 1 GC/FID Gravimetric Heavy Hydrocarbons (F4G) ORG-120-5102 Based on CCME CWS Tier 1 GRAVIMETRIC o-terphenyl ORG-120-5102 CCME GC/FID % Moisture LAB-131-4024 CSSS 70.2 GRAVIMETRIC 1-Methylnaphthalene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
>C10 - C16 (F2) ORG-120-5102 Based on CCME CWS Tier 1 GC/FID >C16 - C34 (F3) ORG-120-5102 Based on CCME CWS Tier 1 GC/FID >C34 - C50 (F4) ORG-120-5102 Based on CCME CWS Tier 1 GC/FID Gravimetric Heavy Hydrocarbons (F4G) ORG-120-5102 Based on CCME CWS Tier 1 GRAVIMETRIC o-terphenyl ORG-120-5102 CCME GC/FID % Moisture LAB-131-4024 CSSS 70.2 GRAVIMETRIC 1-Methylnaphthalene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
>C16 - C34 (F3) ORG-120-5102 Based on CCME CWS Tier 1 GC/FID >C34 - C50 (F4) ORG-120-5102 Based on CCME CWS Tier 1 GC/FID Gravimetric Heavy Hydrocarbons (F4G) ORG-120-5102 Based on CCME CWS Tier 1 GRAVIMETRIC o-terphenyl ORG-120-5102 CCME GC/FID % Moisture LAB-131-4024 CSSS 70.2 GRAVIMETRIC 1-Methylnaphthalene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
>C34 - C50 (F4)ORG-120-5102Based on CCME CWS Tier 1GC/FIDGravimetric Heavy Hydrocarbons (F4G)ORG-120-5102Based on CCME CWS Tier 1GRAVIMETRICo-terphenylORG-120-5102CCMEGC/FID% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	
Gravimetric Heavy Hydrocarbons (F4G)ORG-120-5102Based on CCME CWS Tier 1GRAVIMETRICo-terphenylORG-120-5102CCMEGC/FID% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	
o-terphenylORG-120-5102CCMEGC/FID% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	
% MoistureLAB-131-4024CSSS 70.2GRAVIMETRIC1-MethylnaphthaleneORG-120-5104EPA SW846/3541/3510/8270CGC/MS	
1-Methylnaphthalene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
2-Methylnaphthalene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Acenaphthene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Acenaphthylene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Acridine ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Anthracene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Benzo(a)anthracene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Benzo(a)pyrene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Benzo(b)fluoranthene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Benzo(j+k)fluoranthene ORG-120-5119 EPA SW846/3541/3510/8270C GC/MS	
Benzo(e)pyrene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Benzo(ghi)perylene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Chrysene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Dibenzo(a,h)anthracene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Fluoranthene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Fluorene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Indeno(1,2,3)pyrene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Naphthalene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Perylene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Phenanthrene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Pyrene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Quinoline ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Naphthalene-d8 ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Terphenyl-d14 ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS	
Pyrene-d10 (%) ORG-120-5119 EPA SW846/3510/8270C GC/MS	
Chloromethane VOL-120-5002 EPA SW846 5035/8260B GC/MS	
Vinyl Chloride VOL-120-5002 EPA SW846 5035/8260B GC/MS	
Bromomethane VOL-120-5002 EPA SW846 5035/8260B GC/MS	
Chloroethane VOL-120-5002 EPA SW846 5035/8260B GC/MS	
Trichlorofluoromethane (FREON 11) VOL-120-5002 EPA SW846 5035/8260B GC/MS	
Acetone VOL-120-5002 EPA SW846 5035/8260B GC/MS	
1,1-Dichloroethylene VOL-120-5002 EPA SW846 5035/8260B GC/MS	
Methylene Chloride (Dichloromethane) VOL-120-5002 EPA SW846 5035/8260B GC/MS	
trans-1,2-Dichloroethylene VOL-120-5002 EPA SW846 5035/8260B GC/MS	

Method Summary

CLIENT NAME: SNC Lavalin Inc.

PROJECT: 680449

SAMPLING SITE:

AGAT WORK ORDER: 21X725158 ATTENTION TO: Alan Parker

SAMPLING SITE:		SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
1,1-Dichloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
cis-1,2-Dichloroethylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Chloroform	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,2-Dichloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,1,1-Trichloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Carbon Tetrachloride	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Benzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,2-Dichloropropane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Trichloroethylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Bromodichloromethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
cis-1,3-Dichloropropene	VOL-120-5002	EPA SW846 5035/8260B	(P&T)GC/MS							
trans-1,3-Dichloropropene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,1,2-Trichloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Toluene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
2-Hexanone	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Dibromochloromethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,2-Dibromoethane	VOL-120-5002	EPA SW846 5235/8260B	GC/MS							
Tetrachloroethylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,1,1,2-Tetrachloroethane	VOL-120- 5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Chlorobenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Ethylbenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
m,p-Xylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Bromoform	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
Styrene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,1,2,2-Tetrachloroethane	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
o-Xylene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,3-Dichlorobenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,4-Dichlorobenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
1,2-Dichlorobenzene	VOL-120-5002	EPA SW846 5235/8260B	GC/MS							
Toluene-d8	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							
4-Bromofluorobenzene	VOL-120-5002	EPA SW846 5035/8260B	GC/MS							

Method Summary

CLIENT NAME: SNC Lavalin Inc. PROJECT: 680449 SAMPLING SITE: AGAT WORK ORDER: 21X725158 ATTENTION TO: Alan Parker

SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Ultra Trace Analysis		1									
Perfluorobutanoic Acid PFBA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluoropentanoic Acid PFPeA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorohexanoic Acid PFHxA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluoroheptanoic Acid PFHpA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorooctanoic Acid PFOA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorononanoic Acid PFNA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorodecanoic Acid PFDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluoroundecanoic Acid PFUnA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorododecanoic Acid PFDoA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorotridecanoic Acid PFTrDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorotetradecanoic Acid PFTeDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorobutanesulfonic Acid PFBS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorohexasulfonic Acid PFHxS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluoroheptanesulfonate PFHpS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorooctasulfonic Acid PFOS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorooctane sulfonamide PFOSA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorodecanesulfonic Acid PFDS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
N-Methylperfluorosulfonamideacetic N-MeFOSAA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorobutanoic Acid-13C4	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluoropentanoic Acid-13C5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorohexanoic Acid-13C5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluoroheptanoic Acid-13C4	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorooctanoic Acid-13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorononanoic Acid-13C9	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorodecanoic Acid-13C6	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluoroundecanoic Acid-13C7	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorododecanoic Acid-13C2	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorotetradecanoic Acid-13C2	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorobutanesulfonic Acid-13C3	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorohexasulfonic Acid-13C3	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorooctasulfonic Acid-13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
Perfluorooctane sulfonamide -13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								
N-Ethylperfluorosulfonamideacetic-D5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS								

CLIENT NAME: SNC Lavalin Inc. 5657 SPRING GARDEN RD, SUITE 200 HALIFAX, NS B3J3R4 (902) 492-4544 **ATTENTION TO: Alan Parker** PROJECT: AGAT WORK ORDER: 21X737616 TRACE ORGANICS REVIEWED BY: Amy Hunter, Trace Organics Supervisor, B.Sc. ULTRA TRACE REVIEWED BY: Olivier Lachance, Method Development Supervisor WATER ANALYSIS REVIEWED BY: Marta Manka, Data Reporter DATE REPORTED: May 25, 2021 PAGES (INCLUDING COVER): 21 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*Notes
VERSION 1:Partial report. PFAS results excluded. 2021/5/4 JFH
Disclaimer

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Nember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 21

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 21X737616 PROJECT:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Atlantic RBCA Tier 1 Hydrocarbons in Water - Low Level Version 3.1

DATE RECEIVED: 2021-04-23

			S5551-21MW03	- S5551-21MW05-	· S5551-21MW06-	- S5551-21MW07-	
		SAMPLE DESCRIPTIO	DN: 21GW-01	21GW-01	21GW-01	21GW-01	
		SAMPLE TY	PE: Water	Water	Water	Water	
		DATE SAMPLE	D: 2021-04-23	2021-04-23	2021-04-23	2021-04-23	
Parameter	Unit	G/S RDL	2379113	2379118	2379119	2379120	
Benzene	mg/L	0.370 0.00	1 <0.001	<0.001	<0.001	<0.001	
Toluene	mg/L	0.002 0.00	ا <0.001	<0.001	<0.001	<0.001	
Ethylbenzene	mg/L	0.09 0.00	1 <0.001	<0.001	<0.001	<0.001	
Xylene (Total)	mg/L	0.00	1 <0.001	<0.001	<0.001	<0.001	
C6-C10 (less BTEX)	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	
>C10-C16 Hydrocarbons	mg/L	0.05	< 0.05	<0.05	<0.05	<0.05	
>C16-C21 Hydrocarbons	mg/L	0.05	< 0.05	<0.05	<0.05	<0.05	
>C21-C32 Hydrocarbons	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	
Modified TPH (Tier 1)	mg/L	0.05	< 0.05	<0.05	<0.05	<0.05	
Sediment			TRACE	YES	TRACE	TRACE	
Resemblance Comment			NR	NR	NR	NR	
Return to Baseline at C32			Y	Y	Y	Y	
Surrogate	Unit	Acceptable Limit	s				
Isobutylbenzene - EPH	%	70-130	92	106	111	102	
Isobutylbenzene - VPH	%	70-130	85	89	85	80	
n-Dotriacontane - EPH	%	70-130	103	118	121	114	

my Huj

DATE REPORTED: 2021-05-25

Certified By:

AGAT WORK ORDER: 21X737616 PROJECT: 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Atlantic RBCA Tier 1 Hydrocarbons in Water - Low Level Version 3.1

DATE RECEIVED: 2021-04-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 2379113-2379120 Modified TPH, Xylene(Total)and C6-C10(less BTEX) are calculated parameters. The calculated parameter is non-accredited. The component parameters of the calculation are accredited.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Resemblance Comment Key: GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction LR - Lube Range UC - Unidentified Compounds NR - No Resemblance NA - Not Applicable

Analysis performed at AGAT Halifax (unless marked by *)

my Hu

DATE REPORTED: 2021-05-25

Certified By:

ATTENTION TO: Alan Parker

SAMPLED BY:

AGAT WORK ORDER: 21X737616 PROJECT: 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

Polycyclic Aromatic Hydrocarbons in Water - (PAH) DATE RECEIVED: 2021-04-23 DATE REPORTED: 2021-05-25 S5551-21MW03- S5551-21MW05- S5551-21MW06- S5551-21MW07-SAMPLE DESCRIPTION: 21GW-01 21GW-01 21GW-01 21GW-01 SAMPLE TYPE: Water Water Water Water DATE SAMPLED: 2021-04-23 2021-04-23 2021-04-23 2021-04-23 2379113 2379118 2379119 2379120 Parameter Unit G/S RDL 1-Methylnaphthalene ug/L 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2-Methylnaphthalene ug/L 0.01 < 0.01 < 0.01 <0.01 <0.01 Acenaphthene ug/L 5.8 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Acenaphthylene ug/L 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Acridine ug/L 4.4 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Anthracene < 0.012 < 0.012 ug/L 0.012 0.012 <0.012 < 0.012 Benzo(a)anthracene ug/L 0.018 0.018 <0.018 <0.018 <0.018 < 0.018 Benzo(a)pyrene ug/L 0.015 0.010 <0.010 < 0.010 < 0.010 < 0.010 0.01 < 0.01 < 0.01 < 0.01 Benzo(b)fluoranthene ug/L < 0.01 Benzo(j+k)fluoranthene < 0.01 µg/L 0.01 < 0.01 < 0.01 < 0.01 Benzo(e)pyrene ug/L 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Benzo(ghi)perylene ug/L 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Chrysene ug/L 0.01 < 0.01 < 0.01 <0.01 < 0.01 Dibenzo(a,h)anthracene ug/L 0.01 < 0.01 < 0.01 <0.01 < 0.01 0.04 Fluoranthene ug/L 0.01 < 0.01 < 0.01 <0.01 <0.01 Fluorene ug/L 3 0.01 < 0.01 < 0.01 <0.01 < 0.01 < 0.01 Indeno(1,2,3-cd)pyrene ug/L 0.01 < 0.01 < 0.01 < 0.01 Naphthalene ug/L 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1.1 ug/L 0.01 < 0.01 < 0.01 <0.01 <0.01 Perylene Phenanthrene ug/L 0.4 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Pyrene ug/L 0.025 0.01 < 0.01 < 0.01 <0.01 < 0.01 Quinoline ug/L 3.4 0.01 < 0.01 < 0.01 <0.01 < 0.01 TRACE TRACE NO TRACE Sediment Surrogate Unit Acceptable Limits Naphthalene-d8 % 50-140 92 87 87 83 Terphenyl-d14 % 50-140 70 70 88 82 % 90 90 94 90 Pyrene-d10 50-140

my Huj

AGAT WORK ORDER: 21X737616 PROJECT: 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Polycyclic Aromatic Hydrocarbons in Water - (PAH)

DATE RECEIVED: 2021-04-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2379113-2379120 Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Benzo(j+k)fluoranthene is not an accredited parameter. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Halifax (unless marked by *)

my Huj

DATE REPORTED: 2021-05-25

AGAT WORK ORDER: 21X737616 PROJECT:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

				Volatile O	rganic Com	pounds in	Water	
DATE RECEIVED: 2021-04-23								DATE REPORTED: 2021-05-25
			5	S5551-21MW03-	S5551-21MW05-	S5551-21MW06-	S5551-21MW07-	
		SAMPLE DES	CRIPTION:	21GW-01	21GW-01	21GW-01	21GW-01	
		SAM	PLE TYPE:	Water	Water	Water	Water	
			SAMPLED:	2021-04-23	2021-04-23	2021-04-23	2021-04-23	
Parameter	Unit	G / S	RDL	2379113	2379118	2379119	2379120	
Chloromethane	ug/L		1	<1	<1	<1	<1	
Vinyl Chloride	ug/L		0.6	<0.6	<0.6	<0.6	<0.6	
Bromomethane	ug/L		0.89	<0.89	<0.89	<0.89	<0.89	
Chloroethane	ug/L		5	<5	<5	<5	<5	
Trichlorofluoromethane (FREON 11)	ug/L		5	<5	<5	<5	<5	
Acetone	ug/L		10	<10	<10	<10	<10	
1,1-Dichloroethylene	ug/L		0.6	<0.6	<0.6	<0.6	<0.6	
Methylene Chloride (Dichloromethane)	ug/L	98.1	2	<2	<2	<2	<2	
trans-1,2-Dichloroethylene	ug/L		2	<2	<2	<2	<2	
1,1-Dichloroethane	ug/L		1	<1	<1	<1	<1	
cis-1,2-Dichloroethylene	ug/L		2	<2	<2	<2	<2	
Chloroform	ug/L	1.8	1	<1	<1	<1	<1	
1,2-Dichloroethane	ug/L	100	2	<2	<2	<2	<2	
1,1,1-Trichloroethane	ug/L		1	<1	<1	<1	<1	
Carbon Tetrachloride	ug/L	13.3	0.56	<0.56	<0.56	<0.56	<0.56	
Benzene	ug/L	370	1	<1	<1	<1	<1	
1,2-Dichloropropane	ug/L		0.7	<0.7	<0.7	<0.7	<0.7	
Trichloroethylene	ug/L	21	1	<1	<1	<1	<1	
Bromodichloromethane	ug/L		1	<1	<1	<1	<1	
cis-1,3-Dichloropropene	ug/L		0.5	<0.5	<0.5	<0.5	<0.5	
trans-1,3-Dichloropropene	ug/L		0.5	<0.5	<0.5	<0.5	<0.5	
1,1,2-Trichloroethane	ug/L		1	<1	<1	<1	<1	
Toluene	ug/L	2	2	<2	<2	<2	<2	
2-Hexanone	ug/L		10.0	<10.0	<10.0	<10.0	<10.0	
Dibromochloromethane	ug/L		1	<1	<1	<1	<1	
1,2-Dibromoethane	ug/L		0.2	<0.2	<0.2	<0.2	<0.2	
Tetrachloroethylene	ug/L	110	2	<2	<2	<2	<2	
1,1,1,2-Tetrachloroethane	µg/L		0.5	<0.5	<0.5	<0.5	<0.5	

Certified By:

my Huj

AGAT WORK ORDER: 21X737616 PROJECT: 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

				volume e	igame een	ip o an ao m	Trate:	
DATE RECEIVED: 2021-04-23								DATE REPORTED: 2021-05-25
				S5551-21MW03-	S5551-21MW05-	S5551-21MW06-	S5551-21MW07-	
		SAMPLE DES	CRIPTION:	21GW-01	21GW-01	21GW-01	21GW-01	
		SAM	PLE TYPE:	Water	Water	Water	Water	
		DATE	SAMPLED:	2021-04-23	2021-04-23	2021-04-23	2021-04-23	
Parameter	Unit	G / S	RDL	2379113	2379118	2379119	2379120	
Chlorobenzene	ug/L	1.3	1	<1	<1	<1	<1	
Ethylbenzene	ug/L	90	2	<2	<2	<2	<2	
m,p-Xylene	ug/L		4	<4	<4	<4	<4	
Bromoform	ug/L		1	<1	<1	<1	<1	
Styrene	ug/L	72	1	<1	<1	<1	<1	
1,1,2,2-Tetrachloroethane	ug/L		1	<1	<1	<1	<1	
o-Xylene	ug/L		1	<1	<1	<1	<1	
1,3-Dichlorobenzene	ug/L	150	1	<1	<1	<1	<1	
1,4-Dichlorobenzene	ug/L	26	1	<1	<1	<1	<1	
1,2-Dichlorobenzene	ug/L	0.70	0.7	<0.7	<0.7	<0.7	<0.7	
Surrogate	Unit	Acceptab	le Limits					
Toluene-d8	%	60-1	140	97	98	100	98	
4-Bromofluorobenzene	%	60-1	140	92	94	94	91	

Volatile Organic Compounds in Water

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

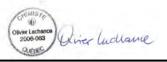
Analysis performed at AGAT Halifax (unless marked by *)

my Huj

ATTENTION TO: Alan Parker

SAMPLED BY:

AGAT WORK ORDER: 21X737616 PROJECT: 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com


CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

				i onnaoi		pounds (wa	
DATE RECEIVED: 2021-04-23							DATE REPORTED: 2021-05-25
			S	S5551-21MW03-	S5551-21MW06-	S5551-21MW07-	
		SAMPLE DESCRIP	TION:	21GW-01	21GW-01	21GW-01	
		SAMPLE T	YPE:	Water	Water	Water	
		DATE SAMP	LED:	2021-04-23	2021-04-23	2021-04-23	
Parameter	Unit	G/S RI	DL	2379113	2379119	2379120	
Perfluorobutanoic Acid PFBA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluoropentanoic Acid PFPeA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorohexanoic Acid PFHxA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluoroheptanoic Acid PFHpA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorooctanoic Acid PFOA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorononanoic Acid PFNA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorodecanoic Acid PFDA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluoroundecanoic Acid PFUnA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorododecanoic Acid PFDoA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorotridecanoic Acid PFTrDA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorotetradecanoic Acid PFTeDA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorobutanesulfonic Acid PFBS	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorohexasulfonic Acid PFHxS	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluoroheptanesulfonate PFHpS	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorooctasulfonic Acid PFOS	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorooctanesulfonamide Acid PFOSA	ng/L	1	.0	<1.0	<1.0	<1.0	
Perfluorodecanesulfonic Acid PFDS	ng/L	1	.0	<1.0	<1.0	<1.0	
N-Methylperfluorosulfonamideacetic N-MeFOSAA	ng/L	1	.0	<1.0	<1.0	<1.0	
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	ng/L	1	.0	<1.0	<1.0	<1.0	

Perfluorinated Compounds (water)

AGAT WORK ORDER: 21X737616 PROJECT: 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:

ATTENTION TO: Alan Parker

SAMPLED BY:

Perfluorinated Compounds (water) DATE RECEIVED: 2021-04-23 DATE REPORTED: 2021-05-25 S5551-21MW03- S5551-21MW06- S5551-21MW07-SAMPLE DESCRIPTION: 21GW-01 21GW-01 21GW-01 SAMPLE TYPE: Water Water Water DATE SAMPLED: 2021-04-23 2021-04-23 2021-04-23 2379113 2379119 2379120 Surrogate Unit Acceptable Limits Perfluorobutanoic Acid-13C4 % 30-140 66 49 68 Perfluoropentanoic Acid-13C5 % 30-140 64 48 71 30-140 Perfluorohexanoic Acid-13C5 % 59 40 60 % 61 43 62 Perfluoroheptanoic Acid-13C4 30-140 Perfluorooctanoic Acid-13C8 % 30-140 57 52 57 Perfluorononanoic Acid-13C9 % 57 51 60 30-140 % 30-140 66 52 63 Perfluorodecanoic Acid-13C6 Perfluoroundecanoic Acid-13C7 % 30-140 46 37 35 Perfluorododecanoic Acid-13C2 % 30-140 40 19 22 % 30 15 Perfluorotetradecanoic Acid-13C2 30-140 12 Perfluorobutanesulfonic Acid-13C3 % 30-140 71 48 58 Perfluorohexasulfonic Acid-13C3 % 30-140 62 47 60 Perfluorooctasulfonic Acid-13C8 % 30-140 65 40 56 Perfluorooctane sulfonamide -13C8 % 30-140 39 39 46 N-Ethylperfluorosulfonamideacetic-30-140 % 51 18 26 D5

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2379119-2379120 Surrogate not within acceptance limits. Surrogate recovery was low bias, therefore results could potentially be biased high due to surrogate correction. Analysis performed at AGAT Montréal (unless marked by *)

ATTENTION TO: Alan Parker

AGAT WORK ORDER: 21X737616 PROJECT:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: SNC Lavalin Inc.

SAMPLING SITE:							SAMPLED B	YY:
					Dissolved	Metals		
DATE RECEIVED: 2021-04-23								DATE REPORTED: 2021-05-25
			:	S5551-21MW03-	S5551-21MW05-	S5551-21MW06-	- S5551-21MW07-	
		SAMPLE DESC	RIPTION:	21GW-01	21GW-01	21GW-01	21GW-01	
		SAMF	LE TYPE:	Water	Water	Water	Water	
			AMPLED:	2021-04-23	2021-04-23	2021-04-23	2021-04-23	
Parameter	Unit	G/S	RDL	2379113	2379118	2379119	2379120	
Dissolved Aluminum	ug/L	Variable	5	<5	<5	<5	<5	
Dissolved Antimony	ug/L		2	<2	<2	<2	<2	
Dissolved Arsenic	ug/L	5	2	4	14	46	47	
Dissolved Barium	ug/L		5	363	151	123	123	
Dissolved Beryllium	ug/L		2	<2	<2	<2	<2	
Dissolved Bismuth	ug/L		2	<2	<2	<2	<2	
Dissolved Boron	ug/L	29000,	5	23	48	34	34	
Dissolved Cadmium	ug/L	1.0, 0.09	0.09	<0.09	<0.09	<0.09	<0.09	
Dissolved Chromium	ug/L		1	5	4	4	3	
Dissolved Cobalt	ug/L		1	<1	<1	<1	<1	
Dissolved Copper	ug/L	Equation	2	<2	<2	<2	<2	
Dissolved Iron	ug/L	300	50	<50	<50	671	642	
Dissolved Lead	ug/L	Equation	0.5	<0.5	<0.5	<0.5	<0.5	
Dissolved Manganese	ug/L		2	277	470	242	267	
Dissolved Molybdenum	ug/L	73	2	<2	18	7	7	
Dissolved Nickel	ug/L	Equation	2	<2	4	<2	<2	
Dissolved Selenium	ug/L	1.0	1	<1	<1	<1	<1	
Dissolved Silver	ug/L	0.25	0.1	<0.1	<0.1	<0.1	<0.1	
Dissolved Strontium	ug/L		5	330	291	223	240	
Dissolved Thallium	ug/L	0.8	0.1	<0.1	<0.1	<0.1	<0.1	
Dissolved Tin	ug/L		2	<2	<2	<2	<2	
Dissolved Titanium	ug/L		2	<2	<2	<2	<2	
Dissolved Uranium	ug/L	33, 15	0.1	4.7	6.2	2.7	2.6	
Dissolved Vanadium	ug/L		2	<2	<2	<2	<2	
Dissolved Zinc	ug/L	30	5	6	14	<5	<5	
	v							

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015 Comments:

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2379113-2379120 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By: Marta Manta

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT:

SAMPLING SITE:

AGAT WORK ORDER: 21X737616 ATTENTION TO: Alan Parker

SAMPLED BY:

Trace Organics Analysis

RPT Date: May 25, 2021			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery	Lin	ptable nits
		iù				RPD		Lower	Upper		Lower	Upper	-	Lower	Upper
Atlantic RBCA Tier 1 Hydrocarbon															
Benzene	1	2378267	< 0.001	< 0.001	NA	< 0.001	76%	70%	130%	95%	70%	130%			
Toluene	1	2378267	< 0.001	< 0.001	NA	< 0.001	78%	70%	130%	89%	70%	130%			
Ethylbenzene	1	2378267	< 0.001	< 0.001	NA	< 0.001	92%	70%	130%	102%	70%	130%			
Xylene (Total)	1	2378267	< 0.001	< 0.001	NA	< 0.001	87%	70%	130%	99%	70%	130%			
C6-C10 (less BTEX)	1	2378267	< 0.01	< 0.01	NA	< 0.01	83%	70%	130%	99%	70%	130%	94%	70%	130%
>C10-C16 Hydrocarbons	1	2373801	< 0.05	< 0.05	NA	< 0.05	82%	70%	130%	103%	70%	130%	90%	70%	130%
>C16-C21 Hydrocarbons	1	2373801	< 0.05	< 0.05	NA	< 0.05	80%	70%	130%	103%	70%	130%	90%	70%	130%
>C21-C32 Hydrocarbons	1	2373801	< 0.01	< 0.01	NA	< 0.01	80%	70%	130%	103%	70%	130%	90%	70%	130%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on a different sample than the duplicate.

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Polycyclic Aromatic Hydrocarbons in Water - (PAH)

		0. ()													
1-Methylnaphthalene	1	2378494	< 0.01	< 0.01	NA	< 0.01	99%	50%	140%	115%	50%	140%	111%	50%	140%
2-Methylnaphthalene	1	2378494	< 0.01	< 0.01	NA	< 0.01	91%	50%	140%	107%	50%	140%	105%	50%	140%
Acenaphthene	1	2378494	< 0.01	< 0.01	NA	< 0.01	93%	50%	140%	112%	50%	140%	110%	50%	140%
Acenaphthylene	1	2378494	< 0.01	< 0.01	NA	< 0.01	73%	50%	140%	93%	50%	140%	91%	50%	140%
Acridine	1	2378494	< 0.01	< 0.01	NA	< 0.01	76%	50%	140%	117%	50%	140%	121%	50%	140%
Anthracene	1	2378494	< 0.012	< 0.012	NA	< 0.012	71%	50%	140%	85%	50%	140%	87%	50%	140%
Benzo(a)anthracene	1	2378494	< 0.018	< 0.018	NA	< 0.018	71%	50%	140%	87%	50%	140%	95%	50%	140%
Benzo(a)pyrene	1	2378494	< 0.010	< 0.010	NA	< 0.010	69%	50%	140%	81%	50%	140%	86%	50%	140%
Benzo(b)fluoranthene	1	2378494	< 0.01	< 0.01	NA	< 0.01	77%	50%	140%	94%	50%	140%	81%	50%	140%
Benzo(j+k)fluoranthene	1	2378494	< 0.01	< 0.01	NA	< 0.01	98%	50%	140%	96%	50%	140%	103%	50%	140%
Benzo(e)pyrene	1	2378494	< 0.01	< 0.01	NA	< 0.01	97%	50%	140%	105%	50%	140%	101%	50%	140%
Benzo(ghi)perylene	1	2378494	< 0.01	< 0.01	NA	< 0.01	90%	50%	140%	71%	50%	140%	76%	50%	140%
Chrysene	1	2378494	< 0.01	< 0.01	NA	< 0.01	95%	50%	140%	116%	50%	140%	110%	50%	140%
Dibenzo(a,h)anthracene	1	2378494	< 0.01	< 0.01	NA	< 0.01	73%	50%	140%	46%	50%	140%	62%	50%	140%
Fluoranthene	1	2378494	< 0.01	< 0.01	NA	< 0.01	92%	50%	140%	113%	50%	140%	113%	50%	140%
Fluorene	1	2378494	< 0.01	< 0.01	NA	< 0.01	85%	50%	140%	103%	50%	140%	103%	50%	140%
Indeno(1,2,3-cd)pyrene	1	2378494	< 0.01	< 0.01	NA	< 0.01	71%	50%	140%	80%	50%	140%	86%	50%	140%
Naphthalene	1	2378494	< 0.01	< 0.01	NA	< 0.01	100%	50%	140%	117%	50%	140%	112%	50%	140%
Perylene	1	2378494	< 0.01	< 0.01	NA	< 0.01	94%	50%	140%	90%	50%	140%	84%	50%	140%
Phenanthrene	1	2378494	< 0.01	< 0.01	NA	< 0.01	93%	50%	140%	115%	50%	140%	110%	50%	140%
Durana		0070404	0.04	0.04		0.04	000/	5001	4.4007	4400/	50 07	4.400/	4400/	500 <i>1</i>	4.400/
Pyrene	1	2378494	< 0.01	< 0.01	NA	< 0.01	96%	50%	140%	119%	50%	140%	113%	50%	140%
Quinoline	1	2378494	< 0.01	< 0.01	NA	< 0.01	96%	50%	140%	172%	50%	140%	173%	50%	140%

Comments: Blank spike and matrix spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on a different sample than the duplicate. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Volatile Organic Compo	unds in Water																
Chloromethane	2378547	<1	<1	NA	< 1	51%	50% 140%	58%	60% 130%	50%	50% 140%						
AGAT QUALITY A	SSURANCE REPORT (V1)									Page 11 of 21							

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT:

SAMPLING SITE:

AGAT WORK ORDER: 21X737616 ATTENTION TO: Alan Parker SAMPLED BY:

Trace Organics Analysis (Continued)

PARAMETER Batch Sample Id Dup #1 Vinyl Chloride 2378547 <0.6 Bromomethane 2378547 <0.89 Chloroethane 2378547 <5 Trichlorofluoromethane (FREON 2378547 <5 11) Acetone 2378547 <5 Acetone 2378547 <0.6 1,1-Dichloroethylene 2378547 <0.6 Methylene Chloride 2378547 <2 (Dichloromethane) trans-1,2-Dichloroethylene 2378547 <2 1,1-Dichloroethylene 2378547 <2 (Dichloromethane) trans-1,2-Dichloroethylene 2378547 <2 1,1-Dichloroethylene 2378547 <2 1,1-Dichloroethane 2378547 <1 cis-1,2-Dichloroethylene 2378547 <2 Chloroform 2378547 <1 1,2-Dichloroethane 2378547 <1 1,2-Dichloroethane 2378547 <1 <	DUPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BI ANK	SPIKE	MAT	RIX SPI	
PARAMETER Batch Id Dup #1 Vinyl Chloride 2378547 <0.6				d REFERENCE MATERIAL						IVIAI	RIA SPI	KE
Bromomethane 2378547 <0.89 Chloroethane 2378547 <5	Dup #2	RPD	Method Blank	Measured Value	Lim	nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
Bromomethane 2378547 <0.89 Chloroethane 2378547 <5					Lower	Upper		Lower	Upper		Lower	Uppe
Chloroethane 2378547 <5	<0.6	NA	< 0.6	58%	50%	140%	67%	60%	130%	63%	50%	140%
Trichlorofluoromethane (FREON 11) 2378547 <5	<0.89	NA	< 0.89	109%	50%	140%	121%	60%	130%	33%	50%	140%
11) Acetone 2378547 <10	<5	NA	< 5	69%	50%	140%	80%	60%	130%	76%	50%	140%
1,1-Dichloroethylene 2378547 <0.6	<5	NA	< 5	67%	50%	140%	80%	60%	130%	78%	50%	140%
Methylene Chloride (Dichloromethane) 2378547 <2	<10	NA	< 10	81%	50%	140%	89%	50%	140%	90%	50%	140%
(Dichloromethane) trans-1,2-Dichloroethylene 2378547 <2	<0.6	NA	< 0.6	84%	50%	140%	96%	60%	130%	93%	50%	140%
1,1-Dichloroethane 2378547 <1	<2	NA	< 2	93%	50%	140%	105%	60%	130%	102%	50%	140%
cis-1,2-Dichloroethylene2378547<2Chloroform23785472111,2-Dichloroethane2378547<2	<2	NA	< 2	87%	50%	140%	100%	60%	130%	95%	50%	140%
Chloroform 2378547 211 1,2-Dichloroethane 2378547 <2	<1	NA	< 1	87%	50%	140%	98%	60%	130%	94%	50%	140%
1,2-Dichloroethane2378547<21,1,1-Trichloroethane2378547<1	<2	NA	< 2	86%	50%	140%	98%	60%	130%	95%	50%	140%
1,1,1-Trichloroethane 2378547 <1	209	1.0%	< 1	94%	50%	140%	106%	60%	130%	93%	50%	140%
Carbon Tetrachloride 2378547 <0.56 Benzene 2378547 <1	<2	NA	< 2	80%	50%	140%	98%	60%	130%	96%	50%	140%
Benzene 2378547 <1 1,2-Dichloropropane 2378547 <0.7	<1	NA	< 1	80%	50%	140%	91%	60%	130%	89%	50%	140%
1,2-Dichloropropane 2378547 <0.7	<0.56	NA	< 0.56	76%	50%	140%	92%	60%	130%	86%	50%	140%
Trichloroethylene2378547<1Bromodichloromethane237854711cis-1,3-Dichloropropene2378547<0.5	<1	NA	< 1	85%	70%	130%	95%	60%	140%	89%	60%	140%
Bromodichloromethane237854711cis-1,3-Dichloropropene2378547<0.5	<0.7	NA	< 0.7	86%	50%	140%	98%	60%	130%	93%	50%	140%
cis-1,3-Dichloropropene 2378547 <0.5	<1	NA	< 1	80%	50%	140%	96%	60%	130%	91%	50%	140%
	12	2.6%	< 1	82%	50%	140%	92%	60%	130%	90%	50%	140%
(<0.5	NA	< 0.5	82%	50%	140%	93%	60%	130%	32%	50%	140%
trans-1,3-Dichloropropene 2378547 <0.5	<0.5	NA	< 0.5	81%	50%	140%	88%	60%	130%	31%	50%	140%
1,1,2-Trichloroethane 2378547 <1	<1	NA	< 1	83%	50%	140%	91%	60%	130%	90%	50%	140%
Toluene 2378547 <2	<2	NA	< 2	79%	70%	130%	87%	60%	140%	85%	60%	140%
2-Hexanone 2378547 <10.0	<10.0	NA	< 10.0	83%	50%	140%	93%	50%	140%	92%	50%	140%
Dibromochloromethane 2378547 <1	<1	NA	< 1	78%	50%	140%	85%	60%	130%	88%	50%	140%
1,2-Dibromoethane 2378547 <0.2	<0.2	NA	< 0.2	82%	50%	140%	88%	60%	130%	88%	50%	140%
Tetrachloroethylene 2378547 <2	<2	NA	< 2	71%	50%	140%	86%	60%	130%	81%	50%	140%
1,1,1,2-Tetrachloroethane 2378547 <0.5	<0.5	NA	< 0.5	76%	50%	140%	85%	60%	130%	84%	50%	140%
Chlorobenzene 2378547 <1	<1	NA	< 1	79%	50%	140%	88%	60%	130%	87%	50%	140%
Ethylbenzene 2378547 <2	<2	NA	< 2	76%	70%	130%	89%	60%	140%	85%	60%	140%
m,p-Xylene 2378547 <4	<4	NA	< 4	75%	70%	130%	85%	60%	140%	83%	60%	140%
Bromoform 2378547 <1	<1	NA	< 1	74%	50%	140%	79%	60%	130%	81%	50%	140%
Styrene 2378547 <1	<1	NA	< 1	75%	50%	140%	86%	60%	130%	82%	50%	140%
1,1,2,2-Tetrachloroethane 2378547 <1	<1	NA	< 1	82%	50%	140%	89%	60%	130%	88%	50%	140%
o-Xylene 2378547 <1	<1	NA	< 1	77%	70%	130%	90%	60%	140%	86%	60%	140%
1,3-Dichlorobenzene 2378547 <1	<1	NA	< 1	72%	50%	140%	83%	60%	130%	78%	50%	140%
1,4-Dichlorobenzene 2378547 <1	<1	NA	< 1	81%	50%	140%	94%	60%	130%	89%	50%	140%
1,2-Dichlorobenzene 2378547 <0.7	<0.7	NA	< 0.7	83%	50%	140%	94%	60%	130%	90%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 21

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT:

SAMPLING SITE:

AGAT WORK ORDER: 21X737616

ATTENTION TO: Alan Parker

SAMPLED BY:

Trace Organics Analysis (Continued)

			•			•	•			,					
RPT Date: May 25, 2021	'T Date: May 25, 2021				E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	ΚE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lim	otable nits
		Id					Value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: Blank spike and Matrix Spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on different sample than duplicate. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

any Hu

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 21

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT:

SAMPLING SITE:

AGAT WORK ORDER: 21X737616 ATTENTION TO: Alan Parker

SAMPLED BY:

Ultra	Trace Analysis
-------	----------------

			·												
RPT Date: May 25, 2021			C	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.10	ptable nits	Recovery	1 1 1 1	eptable nits
		Ia					Value	Lower	Upper	,	Lower	Upper		Lower	Upper
Perfluorinated Compounds (water)														
Perfluorobutanoic Acid PFBA	1	2425929	24.1	23.8	1.3%	< 1.0	NA	60%	140%	106%	60%	140%	104%	60%	140%
Perfluoropentanoic Acid PFPeA	1	2425929	6.7	< 1.0	NA	< 1.0	NA	60%	140%	106%	60%	140%	92%	60%	140%
Perfluorohexanoic Acid PFHxA	1	2425929	6.1	4.8	NA	< 1.0	NA	60%	140%	106%	60%	140%	89%	60%	140%
Perfluoroheptanoic Acid PFHpA	1	2425929	6.9	7.8	12.2%	< 1.0	NA	60%	140%	98%	60%	140%	100%	60%	140%
Perfluorooctanoic Acid PFOA	1	2425929	9.1	8.2	10.4%	< 1.0	NA	60%	140%	118%	60%	140%	107%	60%	140%
Perfluorononanoic Acid PFNA	1	2425929	1.8	2.2	NA	< 1.0	NA	60%	140%	109%	60%	140%	108%	60%	140%
Perfluorodecanoic Acid PFDA	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	99%	60%	140%	96%	60%	140%
Perfluoroundecanoic Acid PFUnA	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	75%	60%	140%	101%	60%	140%
Perfluorododecanoic Acid PFDoA	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	91%	60%	140%	92%	60%	140%
Perfluorotridecanoic Acid PFTrDA	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	110%	60%	140%	100%	60%	140%
Perfluorotetradecanoic Acid PFTeDA	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	103%	60%	140%	125%	60%	140%
Perfluorobutanesulfonic Acid PFBS	1	2425929	1.5	1.4	NA	< 1.0	NA	60%	140%	116%	60%	140%	88%	60%	140%
Perfluorohexasulfonic Acid PFHxS	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	117%	60%	140%	81%	60%	140%
Perfluoroheptanesulfonate PFHpS	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	91%	60%	140%	90%	60%	140%
Perfluorooctasulfonic Acid PFOS	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	109%	60%	140%	109%	60%	140%
Perfluorooctanesulfonamide Acid PFOSA	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	133%	60%	140%	104%	60%	140%
Perfluorodecanesulfonic Acid PFDS	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	90%	60%	140%	75%	60%	140%
N- Methylperfluorosulfonamideacetic N-MeFOSAA	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	118%	60%	140%	94%	60%	140%
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	1	2425929	< 1.0	< 1.0	NA	< 1.0	NA	60%	140%	159%	60%	140%	82%	60%	140%

Comments: Blank spike: More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 21

Quality Assurance

CLIENT NAME: SNC Lavalin Inc.

PROJECT:

SAMPLING SITE:

AGAT WORK ORDER: 21X737616

ATTENTION TO: Alan Parker

SAMPLED BY:

Water Analysis RPT Date: May 25, 2021 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE															
RPT Date: May 25, 2021			[DUPLICATI	Ξ		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable nits	Recovery		ptable nits	Recovery		eptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Dissolved Metals															
Dissolved Aluminum	2397544		< 5	< 5	0.0%	< 5	106%	80%	120%	107%	80%	120%	95%	70%	130%
Dissolved Antimony	2397544		< 2	< 2	0.0%	< 2	101%	80%	120%	103%	80%	120%	113%	70%	130%
Dissolved Arsenic	2397544		10	10	NA	< 2	101%	80%	120%	100%	80%	120%	NA	70%	130%
Dissolved Barium	2397544		< 5	< 5	0.0%	< 5	106%	80%	120%	110%	80%	120%	107%	70%	130%
Dissolved Beryllium	2397544		< 2	< 2	0.0%	< 2	106%	80%	120%	105%	80%	120%	105%	70%	130%
Dissolved Bismuth	2397544		< 2	< 2	0.0%	< 2	102%	80%	120%	102%	80%	120%	86%	70%	130%
Dissolved Boron	2397544		72	76	5.7%	< 5	102%	80%	120%	104%	80%	120%	NA	70%	130%
Dissolved Cadmium	2397544		< 0.09	< 0.09	0.0%	< 0.09	107%	80%	120%	104%	80%	120%	111%	70%	130%
Dissolved Chromium	2397544		3	2	NA	< 1	101%	80%	120%	100%	80%	120%	99%	70%	130%
Dissolved Cobalt	2397544		< 1	< 1	0.0%	< 1	102%	80%	120%	101%	80%	120%	101%	70%	130%
Dissolved Copper	2397544		< 2	< 2	0.0%	< 2	104%	80%	120%	104%	80%	120%	104%	70%	130%
Dissolved Iron	2397544		< 50	< 50	0.0%	< 50	99%	80%	120%	101%	80%	120%	109%	70%	130%
Dissolved Lead	2397544		< 0.5	< 0.5	0.0%	< 0.5	100%	80%	120%	102%	80%	120%	97%	70%	130%
Dissolved Manganese	2397544		< 2	< 2	0.0%	< 2	103%	80%	120%	104%	80%	120%	101%	70%	130%
Dissolved Molybdenum	2397544		< 2	< 2	0.0%	< 2	99%	80%	120%	99%	80%	120%	105%	70%	130%
Dissolved Nickel	2397544		< 2	< 2	0.0%	< 2	104%	80%	120%	107%	80%	120%	104%	70%	130%
Dissolved Selenium	2397544		< 1	< 1	0.0%	< 1	104%	80%	120%	103%	80%	120%	128%	70%	130%
Dissolved Silver	2397544		< 0.1	< 0.1	0.0%	< 0.1	102%	80%	120%	102%	80%	120%	92%	70%	130%
Dissolved Strontium	2397544		164	170	3.6%	< 5	102%	80%	120%	101%	80%	120%	100%	70%	130%
Dissolved Thallium	2397544		< 0.1	< 0.1	0.0%	< 0.1	94%	80%	120%	97%	80%	120%	91%	70%	130%
Dissolved Tin	2397544		< 2	< 2	0.0%	< 2	105%	80%	120%	107%	80%	120%	109%	70%	130%
Dissolved Titanium	2397544		< 2	< 2	0.0%	< 2	104%	80%	120%	105%	80%	120%	98%	70%	130%
Dissolved Uranium	2397544		6.7	6.8	1.8%	< 0.1	102%	80%	120%	105%	80%	120%	NA	70%	130%
Dissolved Vanadium	2397544		15	15	1.9%	< 2	101%	80%	120%	99%	80%	120%	NA	70%	130%
Dissolved Zinc	2397544		< 5	< 5	0.0%	< 5	102%	80%	120%	100%	80%	120%	115%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Marta Manta

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 21

QC Exceedance

CLIENT NAME: SNC Lavalin Inc.

PROJECT:

AGAT WORK ORDER: 21X737616

ATTENTION TO: Alan Parker

RPT Date: May 25, 2021	REFERENC	E MATER	IAL	METHOD	BLANK	SPIKE	MAT	TRIX SPI	KE	
PARAMETER	Sample Id	Measured	Accepta Limit	te	Recoverv	Lin	ptable nits	Recoverv	Lin	eptable mits
		Value	Lower U	Jpper	,	Lower	Upper		Lower	Upper
Polycyclic Aromatic Hydrocarbons in Water - (PAH)										
Dibenzo(a,h)anthracene	2378494	73%	50% 1	40%	46%	50%	140%	62%	50%	140%
Quinoline	2378494	96%	50% 1	40%	172%	50%	140%	173%	50%	140%

Comments: Blank spike and matrix spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on a different sample than the duplicate. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Volatile Organic Compounds in Water								
Chloromethane	51%	50% 140%	58%	60%	130%	50%	50%	140%
Bromomethane	109%	50% 140%	121%	60%	130%	33%	50%	140%
cis-1,3-Dichloropropene	82%	50% 140%	93%	60%	130%	32%	50%	140%
trans-1,3-Dichloropropene	81%	50% 140%	88%	60%	130%	31%	50%	140%

Comments: Blank spike and Matrix Spike: Less than 10% of elements not within acceptance limits.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on different sample than duplicate. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Page 16 of 21

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

QC Exceedance

CLIENT NAME: SNC Lavalin Inc.

PROJECT:

AGAT WORK ORDER: 21X737616 ATTENTION TO: Alan Parker

RPT Date: May 25, 2021		REFERENC	E MATE	RIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery	Lin	eptable nits
		Value	Lower	Upper		Lower	Upper		Lower	Upper
Perfluorinated Compounds (water)										
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	2425929	NA	60%	140%	159%	60%	140%	82%	60%	140%

Comments: Blank spike: More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 17 of 21

Method Summary

CLIENT NAME: SNC Lavalin Inc. PROJECT:

AGAT WORK ORDER: 21X737616

ATTENTION TO: Alan Parker

FROJECT.		ATTENTION TO, Alar Farker								
SAMPLING SITE:		SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Trace Organics Analysis										
Benzene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS							
Toluene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS							
Ethylbenzene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS							
Xylene (Total)	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS							
C6-C10 (less BTEX)	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID							
>C10-C16 Hydrocarbons	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID							
>C16-C21 Hydrocarbons	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID							
>C21-C32 Hydrocarbons	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID							
Modified TPH (Tier 1)	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	CALCULATION							
Sediment			GC/MS/FID							
Resemblance Comment	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID							
Return to Baseline at C32	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID							
Isobutylbenzene - EPH	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID							
Isobutylbenzene - VPH	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS							
n-Dotriacontane - EPH	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID							
1-Methylnaphthalene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
2-Methylnaphthalene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Acenaphthene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Acenaphthylene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Acridine	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Anthracene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Benzo(a)anthracene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Benzo(a)pyrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Benzo(b)fluoranthene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Benzo(j+k)fluoranthene	ORG-120-5103	EPA SW-846 3510C & 8270	GC/MS							
Benzo(e)pyrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Benzo(ghi)perylene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Chrysene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Dibenzo(a,h)anthracene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Fluoranthene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Fluorene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Indeno(1,2,3-cd)pyrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Naphthalene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Perylene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Phenanthrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Pyrene	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Quinoline	ORG-120-5119	EPA SW846/3510/8270C	GC/MS							
Naphthalene-d8	ORG-120-5104	EPA SW846/3510/8270C	GC/MS							

Method Summary

CLIENT NAME: SNC Lavalin Inc. PROJECT:

AGAT WORK ORDER: 21X737616 ATTENTION TO: Alan Parker

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Terphenyl-d14	ORG-120-5104	EPA SW846/3510/8270C	GC/MS
Pyrene-d10	ORG-120-5104	EPA SW846/3510/8270C	GC/MS
Chloromethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Vinyl Chloride	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
Bromomethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
Chloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Trichlorofluoromethane (FREON 11)	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Acetone	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
1,1-Dichloroethylene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Methylene Chloride (Dichloromethane)	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
trans-1,2-Dichloroethylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
1,1-Dichloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
cis-1,2-Dichloroethylene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Chloroform	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
1,2-Dichloroethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
1,1,1-Trichloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Carbon Tetrachloride	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
Benzene	VOL-120-5001	EPA SW-846 5030B/8260	GC/MS
1,2-Dichloropropane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Trichloroethylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
Bromodichloromethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
cis-1,3-Dichloropropene	VOL-120-5001	EPA SW-846 5030B/8260B	(P&T)GC/MS
trans-1,3-Dichloropropene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
1,1,2-Trichloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Toluene	VOL-120-5001	EPA SW-846 5030B/8260	GC/MS
2-Hexanone	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
Dibromochloromethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
1,2-Dibromoethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Tetrachloroethylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
1,1,1,2-Tetrachloroethane	VOL-120-5001	EPA SW846 5035/8260B	GC/MS
Chlorobenzene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
Ethylbenzene	VOL-120-5001	EPA SW-846 5030B/8260	GC/MS
m,p-Xylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
Bromoform	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
Styrene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
1,1,2,2-Tetrachloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
o-Xylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
1,3-Dichlorobenzene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
1,4-Dichlorobenzene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS
1,2-Dichlorobenzene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Toluene-d8	VOL-120-5001	EPA SW846 5030B/8260B	GC/MS
4-Bromofluorobenzene	VOL-120-5001	EPA SW846 5030B/8260B	GC/MS

Method Summary

CLIENT NAME: SNC Lavalin Inc. PROJECT: AGAT WORK ORDER: 21X737616 ATTENTION TO: Alan Parker

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ultra Trace Analysis			
Perfluorobutanoic Acid PFBA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluoropentanoic Acid PFPeA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorohexanoic Acid PFHxA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluoroheptanoic Acid PFHpA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorooctanoic Acid PFOA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorononanoic Acid PFNA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorodecanoic Acid PFDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluoroundecanoic Acid PFUnA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorododecanoic Acid PFDoA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorotridecanoic Acid PFTrDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorotetradecanoic Acid PFTeDA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorobutanesulfonic Acid PFBS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorohexasulfonic Acid PFHxS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluoroheptanesulfonate PFHpS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorooctasulfonic Acid PFOS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorooctanesulfonamide Acid PFOSA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorodecanesulfonic Acid PFDS	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
N-Methylperfluorosulfonamideacetic N-MeFOSAA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
N-Ethylperfluorosulfonamideacetic N-EtFOSAA	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorobutanoic Acid-13C4	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluoropentanoic Acid-13C5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorohexanoic Acid-13C5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluoroheptanoic Acid-13C4	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorooctanoic Acid-13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorononanoic Acid-13C9	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorodecanoic Acid-13C6	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluoroundecanoic Acid-13C7	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorododecanoic Acid-13C2	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorotetradecanoic Acid-13C2	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorobutanesulfonic Acid-13C3	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorohexasulfonic Acid-13C3	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorooctasulfonic Acid-13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
Perfluorooctane sulfonamide -13C8	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS
N-Ethylperfluorosulfonamideacetic-D5	TOX-151-19012F	EPA 537, ISO25101	LC/MS/MS

Method Summary

CLIENT NAME: SNC Lavalin Inc. PROJECT:

AGAT WORK ORDER: 21X737616

ATTENTION TO: Alan Parker

TROJECT.		ATTENTION TO.	
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Aluminum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Antimony	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Arsenic	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Barium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Beryllium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Bismuth	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Boron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Cadmium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Chromium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Cobalt	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Copper	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Iron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Lead	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Manganese	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Molybdenum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Nickel	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Selenium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Silver	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Strontium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Thallium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Tin	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Titanium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Uranium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Vanadium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Zinc	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS

Appendix G

Field Notes

Fiel	d Bo	orehole Log	TEST HO	LENO .: BAZ		ELEV.:	4	
1.10		10 0.1					_	
PROJECT	NO.: HU	ntle poit		DATE: 22 march 2	/	LOGS E	Y: SU	
PROJECT: DRILL RIG:	7000	14		DIA: SA MAGINS			1.11	
MINOR SOIL 1			DENSITY	MINOR SOIL TYPE e.g. silty, clayey, e	OPERATO		1	1
WATER CONT	ENT dry, dar		VERY LOOSE	WATER CONTENT dry, damp, moist, v	wet	PP (tsf) 0-0.25	N <2	CONSISTENCY VERY SOFT
GRADATION p	boorty or well	4-10		CONSISTENCY PLASTICITY low, medium, highly		0.25-0.5	2-4	SOFT
SIZE RANGE	ine, medium,	coarse 30-50	DENSE	COLOUR		0.5-1	4-8 8-15	FIRM
COLOUR INCLUSIONS/	DOUR oxide	as, roots, mica, etc.	VERY DENSE	INCLUSIONS/ODOUR oxides, roots, m	nica, etc.	2-4	15-30	VERY STIFF
CLAY TILL	- heterog	eneous mixture of gravel, sand,	silt and clay	COBBLE	E: 75-200mm	>4	>30	HARD
"and" 35-50	%, "y" 20	-36%, "some" 10-20%, "trace" (0-10%	Occasional, Freque			< >200mm	
ZONE	USC		CLASSIFICATION	1	SAMPLE	1	DEPTH	PPM
(ft)		209-1-1-1	1		NO.		(ft)	
0-4"	1	BUT Lumus, rooma	X		1	551	0-2	1/2/6/12
411 -		redby sitte	0.50 0.1	ach 10	2			11111
		nustra rea	Lict Da	pepples moist	3	552	2-4	7/6/6/7
-	-	les note fi	1 din	lips ourse	4 5	200	4-6	Status
		stre along	. acy re	- ens mary	6	دد	1-6	37/1/10
	1.1.1	4-1	5' loar m	Falma Pobales -	÷ 7	422	6-0	2/9/14/14
		6-8		wet ebble	8		0 0	2414
		block	Span.		9	555	8-10	6/9/15/14
		8-10	1 span	dry	10			
					11	55 %	10-12	14/13/14/17
		19-16	Spoon Lor	in to Water	12	110	10 111	shtate
		anepehl		Strumin	13	557	12-14	3/10/12/16
		S TO A COLUMN				882	14-16	4/8/12/15
		1-0 11/2 16				1.10	11 10	holistio
		Bander 11	1	7. 1 0 l	17	559	0-2	Dupà #1
		JOACHIL W	Cuttyings.	Sande Bant	18		1	. 18
21.1					19			
					20			
					22			
	1	44			23			
	-	* metals, PAH	PEASI	Jup SS9	24			111111
		0	5 00-41	1#2 =	25	· · · · · ·		10000
		Grainsizo	Serpli#6	2 /0-121	26		1000	
		()			27		No. 11	
•	4				28 29	1.1		
		and the second second	1000		30	-		
			S					
oughing zon						INSTALL	ATION DET	AILS
epage zone			Hand Mark	Contraction of the second	LENGTH OF			
	and the second se	upon completion -			LENGTH OF			
epth to water					CUTTINGS -			
					BENTONITE			
					SAND - FRÓ HEIGHT ABO		IND	
		1			DEPTH TIP E	the second s	and the second se	
					TYPE OF CC		JOIND	

ø

PROJECT N	o <u>:: Ha</u>	artlen A	oinf	DATE: 17 mond	R)	LOGS B	Y:S	56
DRILL RIG	-OC-DV	0		DIA: Stol Aughe.	OPERATO	2:		
MINOR SOIL T			N DENSITY	MINOR SOIL TYPE e.g. silty, clayey, etc		PP (tsf)	N	CONSISTENCY
WATER CONTE			0-4 VERY LOOSE	WATER CONTENT dry, damp, moist, w		0-0.25	<2	VERY SOFT
DENSITY			4-10 LOOSE	CONSISTENCY		0.25-0.5	2-4	SOFT
GRADATION po	And the second s		10-30 MED. DENSE	PLASTICITY low, medium, highly		0.5-1	4-8	FIRM
SIZE RANGE fit	ne, medium, i	coarse	30-50 DENSE	COLOUR	3.6	1-2	8-15	STIFF
COLOUR		s, roots, mica, etc.	>50 VERY DENSE	INCLUSIONS/ODOUR oxides, roots, mi	ca, etc.	2-4	15-30 >30	VERY STIFF HARD
and the second second second		the second s	ravel, sand, silt and clay	COBBLE	75-200mm E			HARD
	1	and the solution of the second s	[11] M.			OULDER	>200mm	
the second s	the second se	35%, "some" 10-20		Occasional, Freque		THE	DEDTU	0.001
ZONE	USC	1.1.1.1.1.1.1.1	CLASSIFICATI	ON	SAMPLE	TYPE	DEPTH	PPM
(ft)			Ar il	- h	NO.	24	(ft)	
		The second se	and the local state of the local	P. Hall-Sonee	1	551	0-21	11/1/2
	i in service s	Sold and	und looking of	h lostera 1000	2	1 1 - 1		
		Man Rom	M to wan it	As Inla	3	552	2-41	4/4/12/18
-		A	,		4			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0-11		he room	at over Till		5	55 3	4-6	6/7/10/10
		100 5 1 000 1 1	Md		6		1.0	9 110110
14		Nechrin.	celt smisend	, topphile inth	7	554	68	575/12/19
1 -		- 10 0	Con Susperio	, M BR 10005, Inter,	-	224	ho	5/7/19/16
		STAN. MAND	prosto posicit		8	A		Statistat
	1	(106-00	ma most dry	condicition txt C.	9	555	8-10	118/12/36
/	170	and the second second	2 1	· · ·	10	1		and the second
士名	-16	@8'T11	mp - posh S	and Sean	11	55 Ja	10-12	157 MI 12015
	0	Soil bi	Daw Sult N	wist .	12	C1	1	
	I	100 64	31 8 -10'SDR	ton wat.	13	557	12-14	6/8/11/14
	1		9	The second s	14		C 43 - 1 - 1	and a had
		12-14	mon apple	mare morat	15	558	14-16	4/6/10/16
		locy mo	Sarold as	plelo	16	220	11 10	10/10/16
		rocairw	The service of the	PRAIA				
					17			
			rout /		18			
	-	FOR	4(00/6		19			
					20			
		Backi	IN Sand-BA	A and arthings	21		<u>N</u>	
					22		1	
					23			
	1				24	1 0		
			1		25			
	-				26			
					the second se		-	-
		1.000			27			-
- CC	1				28			
					29			
- marcal	10.000				30			1
					10.000.00	S		10.00 F.
Sloughing zo	nes -				1.	INSTAL	LATION DET	AILS
Seepage zon			۳		LENGTH OF			
		upon completion -			LENGTH OF			
					CUTTINGS			
Depth to wate		mpleuon -						
REMARKS					BENTONITE			
2 - C.					SAND - FRO			
					HEIGHT AB	OVE GRO	UND	
					Contraction of the Article Section of the Art			
					DEPTH TIP	BELOW (GROUND	

	_	11.11		
PROJECT NO.: 1-Parten Point DATE: 16 march 2 DOCATION:	1	LOGS B	r: <u>SU</u>	
DRILL RIG: ZOBAN DIA: Std. Aughs	OPERATO	R.		
MINOR SOIL TYPE e.g. silty, dayey, etc N DENSITY MINOR SOIL TYPE e.g. silty, dayey, etc		PP (tsf)	N	CONSISTENCY
WATER CONTENT dry, damp, moist, wat 0-4 VERY LOOSE WATER CONTENT dry, damp, moist, wat		0-0.25	<2	VERY SOFT
DENSITY 4-10 LOOSE CONSISTENCY		0.25-0.5	2-4	SOFT
GRADATION poorly or well 10-30 MED. DENSE PLASTICITY low, medium, highly		0.5-1	4-8	FIRM
SIZE RANGE fine, medium, coarse 30-50 DENSE COLOUR	d air	1-2	8-15	STIFF
COLOUR >50 VERY DENSE INCLUSIONS/ODOUR oxides, roots, mi INCLUSIONS/ODOUR oxides, roots, mica, etc.	ica, eic.	2-4	15-30 >30	VERY STIFF HARD
	: 75-200mm l			TURD
and" 35-50%, "y" 20-35%, "some" 10-20%, "trace" 0-10% Occasional, Freque			2001111	
ZONE USC CLASSIFICATION	SAMPLE	TYPE	DEPTH	PPM
(ft)	NO.	10.2	(ft)	11.00
-4" blknootnat, humes L.	1	551	8-2'	1/2/11
biking wan in while s	2	201	0-d	1.3/1/6
-1.57 Mustubra-grusselt-senesand	3	552	2-4	Statuti
- ATT THE AND A DAY LONG SAVE		229	01-4	3/4/ 7/6
moist, low plastic to pubbles	4	500	11 1	2/4/5/8
15- 14 011 and a and a state	5	553	4-6	3/4/5/8
5- 141 Md-bu silt Sove Sand, mois,	6	-01.	7 9	abelitie
low protect to peppies	7	554	6-8	3/5/6/10
	8	0.0	-	the help
@ 5 4 WetSandy Sean redbrn.	9	556	8-10	9/10/13/0
ma sand Propriet Some Cilt	10			1 1 1
(27cm)	11	556	10-12	5/11/10/15
@ 6-& motor around a belle.	12			
	13	557	12-14	5/7/12/6
	14	1		
IOHO 14	15			
	16	-		
Backer w Sand Bart and Withings	17		1	
	18			
	19			
	20			
	21			
	22			
	23		1	
	23			
	24		-	
	26			
	and the second se			
	27			
	28			
	29			
	30	·	2	
oughing zones -		INSTAL	LATION DET	AILS
eepage zones -	LENGTH O	the second s		
epth to bottom of hole upon completion -	LENGTH O			
lepth to water upon completion -	CUTTINGS			
	And in case of the local division of the loc	and the second se		
EMARKS	BENTONIT		-	
	SAND - FRO			
	HEIGHT AB			
		DELOWI	DOLIND	
	DEPTH TIP TYPE OF C		SKOUND	

1

Fiel	d Bo	orehole L	og	TEST HO	DLE NO .: DATO	Ц	_ELEV.:		
PROJECT N	NO.: <u>Ha</u>	the par	L	_	DATE: 22000	221	LOGS B	Y: SV	
DRILL RIG:	Laco	~		1.15 2.	DIA: Staturan	O OPERATO	R:	-	
MINOR SOIL			the second se	NSITY	MINOR SOIL TYPE e.g. sifty, claye	ay, etc	PP (Isf)	N	CONSISTENCY
DENSITY	ENT dry, dan	np, moist, wet		Y LOOSE	WATER CONTENT dry, damp, mo CONSISTENCY	ist, wet	0-0.25	<2 2-4	VERY SOFT SOFT
GRADATION		6	10-30 MED	DENSE	PLASTICITY low, medium, highly		0.5-1	4-8	FIRM
SIZE RANGE	ine, medium,	coarse	The second se	ENSE Y DENSE	COLOUR INCLUSIONS/ODOUR oxides, root		1-2	8-15	STIFF
	ODOUR oxide	s, roots, mica, etc.	Poor VER	TUENSE	INGLUSIONS/ODOUR oxides, rool	is, mica, etc.	2-4	15-30 >30	VERY STIFF HARD
		eneous mixture of gra			COBE	3LE: 75-200mm	BOULDER	>200mm	1 1970F
		35%, "some" 10-20%	The second s		Occasional, Fre	the second s			Concernant day
ZONE	USC	1.1.1.1.1.1.0.0	CLAS	SIFICATIC	N	SAMPLE	TYPE	DEPTH	PPM
(ft)) ~ 3//		ber nooth	a bi	Mak Le		NO.	1.01	(ft)	di la h
2-2"		A HORN	a- nu	imus			SSI	0-21	11/3/4
311 -		reabrn	2005	masa	Q . to makelo	2	cc 2	2-4'	3/20/33/2
		aspetino	moch		wand & toth	4	200	a-4	5/20/22/6
		- your	- 14 - W. M.	- try	a weeks weeks	5	893	4-10	2/4/2/10
-						6	30-	in the	11/01/00
		EOHO	9.5 A	une	netural	7	554	6-8	419/20/23
	_	1. 1.		0	1	8			
-	1	dryap	when 9.5	<u> (</u>	-	9	555	8-10	10/9/12/50-
		Bargerin	it sand	Dau	the Malland	10			1 1 1
		DUCTION	IN DOWN	-Bow	r ~ arttings	11			
				-		12			
		SSB: P	STEX, VC	C.C	6-132 PEAS	14			
		55911	notals Pi	AH. P	FAC	15	558	8-10 D	100/#5
			. Posquaición	() () () () () () () () () () () () () (The Person	16		11 1 2 1	Age
	1		The Carlo			17	559	0-2 D	400#1
						18			18
						19		-	
						20		_	
						21			
				_		23	-		
						24			
						25	·		- d -
						26			
	1000			6		27	1.1.1		
	10	Contraction of the second			The second second	28			
						29			
-			-	1		30			
oughing zor	nes -		- Altar	-			INCTAL	ATION	
epage zon		a second second	() P.	- N.	1.1	LENGTH OF		ATION DET	AILS
		upon completion -		1.1.1.1	<i>p</i> .	LENGTH OF			
pth to wate					1000	CUTTINGS			
MARKS						BENTONITE			
	_			2221		SAND - FRO			
				- 20-		HEIGHT AB			
						DEPTH TIP		ROUND	
		× 17				TYPE OF C	OVER		

Field	d Bo	orehole Log	TEST HO	DLE NO .: THELE	_	ELEV.:		
PROJECT:		atles Points		DATE: 16march 2	/	LOGS B	۲: <u></u>	/
DRILL RIG:	No. of Concession, Name			DIA: Stal Augus	OPERATO	R:		
MINOR SOIL TYPE e.d. slity, clayey, etc N DENSITY WATER CONTENT dry, damp, moist, wet 0-4 VERY LOOSE DENSITY 4-10 LOOSE GRADATION poorly or well 10-30 MED. DENSE SIZE RANGE fine, medium, coarse 30-50 DENSE			MINOR SOIL TYPE e.g. silty, dayey, etc WATER CONTENT dry, damp, moist, we CONSISTENCY PLASTICITY low, medium, highly COLOUR		PP (tst) 0-0.25 0.25-0.5 0.5-1 1-2	N <2 2-4 4-8 8-15	CONSISTENCY VERY SOFT SOFT FIRM STIFF	
COLOUR		>50	VERY DENSE	INCLUSIONS/ODOUR oxides, roots, mic	a, etc.	2-4	15-30	VERY STIFF
and the second day in the second day		es, roots, mica, etc.	all and alars	COPPLE	75 000	>4	>30	HARD
	and the second sec	eneous mixture of gravel, sand			75-200mm I		(>200mm	
ZONE (ft)	%, y 20 USC	35%, "some" 10-20%, "trace"	CLASSIFICATIO	Occasional, Frequer ON	SAMPLE NO.	TYPE	DEPTH (ft)	РРМ
0-4"		5/K hymusen	solvat		1	551	0-21	92/3/4
				0	2		1.1.1.1.1.1.1.1.1	1
40 -8'		grey Sondh Sil	& Serope	ablese Rooklas	3	SS2	2-4'	1/4/4/4
		topenalos. N	noisk	STRUMPLE AND AND	4			
-			10 1 10 1		5	\$53	4-6	3/4/6/12
8" - 12	.51	rect bon sardy.	silt Til	1 prly stated	6		1 0	otria in
		th peleble, en	1 Mustin 1	nd mn pailes 1030	y \$ 7	554	6-81	9,15/8/9
		2-41 W	10-67-		8	200	a	HUGLOL -
	B-10's paper - Rephiles partially bloken SS.				9	555	8-10'	14/19/19/22
		and the second se	and the second se		10	SC/	DIAL	9/12/50-4"
	-	10-12 petrole blocking sprom			11	556	10-12	119/30-4"
12.5 - grogran Silt Sode, dry, low plastic				12	557	12-14	16/19/50	
					13	101	104-14	16/11/00
-		Moredry kan	abome.		15	58	14-16	48/28/46/50
		SA90	the second s	stall day	16	200	10	101001118120
-			20 201	and to water	17	1		
			the second s	Jwater Vn A.W.	18			
	-	A DELETION AND A DELETION AND	and the second sec	8	19			
		EDHOZO	,		20		ſ	
	1	and the second second			21	-	2	
		28			22			
	-				23	-	, in	1.200
				1	24			1
					25			
	1	-			26	-	-	
					27 28			
					28			
					30	-	1	
					00			
Sloughing zo	ones -					INSTAL	LATION DET	AILS
Seepage zor					LENGTH O		1:20-2	
the second s		e upon completion -					- 1 6-	
Depth to wat		the second s			CUTTINGS	- FROM	0-2	
REMARKS	and the second second second				BENTONITI	E - FROM	4-2'	
a contraint					SAND - FRO	DM 20	-41	
					HEIGHT AB			
					DEPTH TIP		the second state of the se	
					TYPE OF C	OVED		

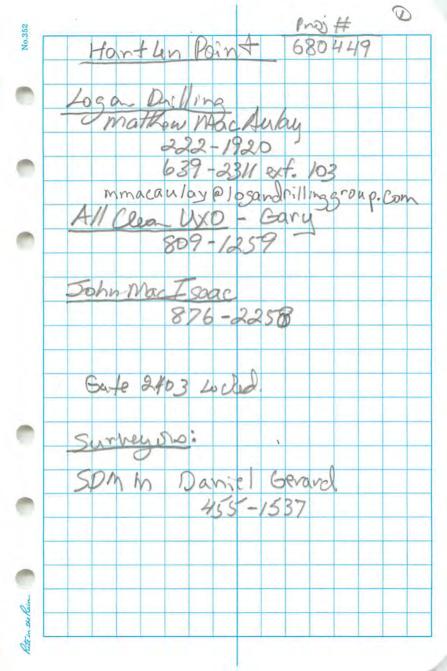
Field	Bc	rehole Log	TEST HO	DLE NO.: BH6		ELEV.:	101	~
ROJECT NO	Hav	tlan Point		DATE: 18 mad	21	LOGS B	Y: <u>SL</u>	,
RILL RIG: 7	020	N		DIA .: Stof Allahs	OPERATO	P.		
MINOR SOIL TYPE			DENSITY	MINOR SOIL TYPE e.g. silty, clayey, et		PP (lsf)	Ť N	CONSISTENCY
WATER CONTENT	T dry, dam	p, moist, wet 0-4	VERY LOOSE	WATER CONTENT dry, damp, moist, w	ret	0-0.25	N <2	VERY SOFT
DENSITY		4-10	LOOSE	CONSISTENCY		0.25-0.5	2-4	SOFT
GRADATION poort		10-30	MED. DENSE	PLASTICITY low, medium, highly		0.5-1	4-8	FIRM
SIZE RANGE fine, I COLOUR	medium, s	oarse 30-50	DENSE VERY DENSE	COLOUR		1-2	8-15	STIFF
NCLUSIONS/ODO	UR oxide:		VERT DENSE	INCLUSIONS/ODOUR oxides, roots, m	ca, etc.	2-4	15-30	VERY STIFF
		neous mixture of gravel, sand	silt and clay	COBBLE	75 000	>4	>30	HARD
		35%, "some" 10-20%, "trace"			: 75-200mm		>200mm	
	USC	10 20 10, 11 20 10, 11 200	CLASSIFICATIO	Occasional, Freque	-			
(ft)	000		CLASSIFICATIO	14	SAMPLE	TYPE	DEPTH	PPM
2-14		the second	1		NO.	00	(ft)	
		mapping		0	1	55-1	0-2	push / 1
- 11'		neapon sil	and the second		2			
		tr peoples, no	d plastic	- pullistid, plate	3	SS-2	2-21	1/2/2/4
		in depts		1 - 11 - 1	4		5.0 C 10	
		being less:	moist 10	61	5	553	4-6	1121416
		prove plas	1 @ 21		6			1/3/10/12
) •	2.00		7	554	6-8	110/10/00
Cont No.					8		0	
1 V.			-		9	555	8-10	10/13/14/
0					10	252	0-10	10/13/14/3
and the B	-					201		1. 1.1.
11.		ALL SEL	C	1	11	556	10-12	7/17/19/20
1/-	-	amory, site		or when	12			- And
	-		physrid	Blak	13	557	12-14	15/17 20/20
	-	pory may	icially the	a algorie (crumbly)	14			
			1 - 12	C Market D	15	558	14-16	7/11/17/18
A 100	1.00	R. M. Concern	1.1.	all I	16		a level of the level of	1 1 5
	1000	204	(0) / for		17	557	DUD &	501
					18	ins	re consid	40-10
	1.1	No. A. C.			19	di	0	DY
		, talit	CIN Sa-D-	Bout astrongs	20	<<9	1/Dund	222
P (1)	12-14	0			21	I MAL	Te pp	100
· · · · · · · · ·	100			-	22	5 11 Y.A.	15 FF	T2 fil
Sight Side	0.00	P P		1	23		and the second s	12 11 1
1929	-		10-10-10-10-10-10-10-10-10-10-10-10-10-1					w les
12000	+ L	and the second	A CONTRACT OF THE OWNER		24		CONTRACT, CO	A
mours	-	ACR	194 - E	197. 12	25			1.4.2
10.00		- Martin - Martin	and the second		26		100	CALL ST B
10		- Wix			27	-0	1. 18.20	ALC: NO.
					28	12111	River	1 and the second
-		1.15			29	16.8.6	100	
		and the second			30	100-	and the second	
- C. 1975	080	- Ci.		·	S	100	2	S
ughing zones	-	- La mer		Sector Sector		INSTAL	ATION DET	AILS
page zones -			8 1 8 1	1 K 1	LENGTH OF		- the period	
	_	pon completion -	A- 5	N. 8 8 1	LENGTH OF			
th to water up					the second s			1000
MARKS					CUTTINGS -		1	1000
	- /	1 1 P			BENTONITE		6	100 million (1997)
	1.10	part and	100 million -		SAND - FRO			
and the second sec	- 14 million				HEIGHT ABO			
-					DEDTU TIO	DEL OWIC	POLIND	
					DEPTH TIP	BELOW G	ROUND	

÷.

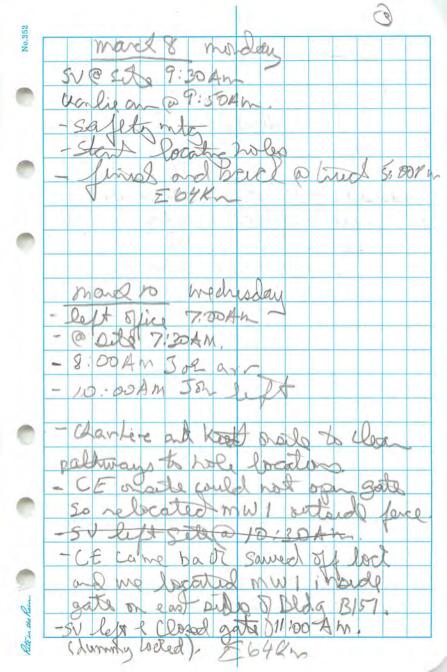
COLUMN T

PROJECT N PROJECT: DRILL RIG:	10.: Hay	DATE: 17 Model LOCATION: DIA: Stol Alugha		LOGS B	Y:	iν	
MINOR SOIL T				PP (tsl)	N	CONSISTENCY	
WATER CONT	ENT dry, dam	p, moist, wel 0-4 VERY LOOSE WATER CONTENT dry, damp, moist, we	it	0-0.25	~2	VERY SOFT	
DENSITY		4-10 LOOSE CONSISTENCY		0.25-0.5	2-4	SOFT	
GRADATION P		toarse 30-50 DENSE PLASTIC/TY low, medium, highly DENSE COLOUR		0.5-1	4-8	FIRM	
SIZE RANGE fi	ne, meaium, a	200750 DENSE COLOUR 250 VERY DENSE INCLUSIONS/ODOUR oxides, roots, mil	a etc	1-2	8-15 15-30	VERY STIFF	
1. 75 X G. Z (4.77, 1) 77	DOUR oxide	a, roots, mica, etc.	a, oto.	>4	>30	HARD	
the second s			75-200mm E	BOULDER	>200mm		
		35%, "some" 10-20%, "trace" 0-10% Occasional, Freque					
ZONE	USC	CLASSIFICATION	SAMPLE	TYPE	DEPTH	PPM	
(ft)			NO.		(ft)		
D- Th		1" repfust one grubra gravel, send att	1	SSI	0-21	5/3/5/5	
			2	150	0-0	212/0	
		labol, drug.		552	0.44	2/1/10/0	
	0.07	and how C.D.F. a. S. D. Franklin	3	552	2-41	2/3/3/	
5" -	28'	red-bon silt sme Sond, topekblig	4	ale		11/11/m/-	
	-	dry low plaster mith red, grisst, store,	5	523	4-6	7/4/0/8	
	208	Reables gtzik	6	2		1. 1 1 - 1	
		4-6' popple blicked spon	7	554	10-81	115/8/1	
2		@ 7" cha fun massir to plata fitr.	8	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		111	
			9	555	8-10'	8/12/16/	
		("II' must maissing tese plate	10				
19		spign to 16 dru.	11	556	10-121	7/13/15/1	
		Aune to 20° NO 5W Obs	12			1	
		Amage to 251 drik	13	557	12-14	7/11/14/1	
		Alicer to 30'	14	221		14.14.14	
		hand dilling @ 28 At 1	15	019	14-16	6/10/14/	
		grey state silo Idipain AW.	. 16	220	11-10	9/10/19/	
			0		-		
		greepowdin also and on signer too	18		-		
		1 July + a vit day	10				
-	-	part - app. ary.					
1 2 0		and the factor of	20		11		
28-2	D	gren slate gure chipe, por	21				
	1.2	-bark J	22				
	1		23		-		
		refuer (a 30	24				
			25				
	120201		26	1000			
		Shen 20-30'	27				
			28				
	ñ (j		29				
			30				
Sloughing zo	ones -			INSTAL	LATION DET	AILS	
Seepage zor			LENGTH O	ESCarl	29.5	19.54	
the second se		e upon completion -	LENGTHO	Enic	: 10 -	-110	
Depth to wat	the second se	AND DETAILED AND COMPANY AND	CUTTINCE	EPOM	:19.5-	0	
the local division of	and the second se	Inpicuon -	PENTONIT	- FROM	10.0-	1	
REMARKS			BENTONIT	- FROM	18.5-1	2-0	
				SAND-FROM 29.5 - 18.5			
			HEIGHT AB				

100	Borehole I		IOLE ND.: MW 2		_ELEV.:			
PROJECT NO	<u></u>	Part	DATE: 22 mod	221	_LOGS	в у . <u>5</u>	V	
	-050-		DIA .: Stal A-March	OPERATO	R:			-
	Ee.g.,sifity, clayey, etc IT dry, damp, moist, wet	N DENSITY	MINOR SOIL TYPE e.g. silty, clayey, e	HC	PP (tsf)	1 N	CONSISTENCY	-
DENSITY		0-4 VERY LOOSE 4-10 LOOSE	WATER CONTENT dry, damp, moist, v CONSISTENCY	wet	0-0.25	<2	VERY SOFT	-
GRADATION poo		10-30 MED. DENSE	PLASTICITY low, medium, highly		0.25-0.5		SOFT	
SIZE RANGE line COLOUR	, medium, coarse	30-50 DENSE	COLOUR		1-2	4-8 8-15	FIRM	-
	OUR oxides, roots, mica, etc.	>50 VERY DENSE	INCLUSIONS/ODOUR oxides, roots, m	ica, etc.	2-4	15-30	VERY STIFF	-
CLAY TILL -	heterogeneous mixture of gr	avel, sand, silt and clay	COBBLE	75 000	>4	>30	HARD	
and" 35-50%,	"y" 20-35%, "some" 10-20	%, "trace" 0-10%	Occasional, Freque	75-200mm		?>200mm		
ZONE	USC	CLASSIFICATIO	DN	SAMPLE	-		1	_
(ft)				NO.	TYPE	DEPTH	PPM	1
5-411	100that	Enrid broadel	Scheller S. D.J. Down	1 1	251	(ft)	101110 10	-
1.01		0	Jan And	2	221	0-21	2/1/2/3	-
- 1.5'	Srybrn S	ilt-son sand		3	500	2-11	3/4/221	-
6	- the -	0.45		4	100	n y	J. IP 11	-
5-	reports		aspelore mite	5	520	4-11	314/6/7	-
_	pat the neo	W ACT.		6		1. 191-	5/1/001	-
	1.	710	1	7	559	6-8	5/8/12/14	Ī.
		6 Locy hope	tains people	8		6	STOTINT!	
	h-	811-0		9	555	8-10	13/16/15/15	82
	alas	p being less	most and may	10	10 March 10		101.01.01.0	4
	alto 14"		1	11	556	10-12	7/12/16/18	5 1
	april 16	pour augen	to 20'and	12	i de la su		111	٦.
	Phanle	WMW.		13	557	12-14	8/13/15/19	
-	AUGO	Robinolia	2 1114	14	125.25	- 12 Mar 14		1
	1.0	~ request a	22/24	15	55.8	19-16	7/13/15/24	1 -
	NOSO	I auge h	A A Cast	16	1.1	Sec. 25.		
	SIAA	Sanal 90 F	east - cast	17		E-7		
1000	0	- margar in 13	014	18				1
-	A DECEMBER OF A			19 20		1997 - 19		4
	551=	0-1' interval	sarpled from 2'spo	× 21				1
			subcur a more a shere				-	
	4.1	0		22		-		1
	imolde	1 mm		24				
				25				1
		en		26	-			
	10'1	ish		27				
				28	-			
	Bent 9	-7 10	<i>c</i>	29	-			
	Sand	e butting to	Senfall	30	-	-		
ghing zones -		- Court 1998 - 1997			INSTALL	ATION DETA	11.9	
page zones -	(hale		L	ENGTH OF		A DETA		
	f hole upon completion -			ENGTH OF	1.1			
	on completion -			CUTTINGS - FROM				1
				ENTONITE -		2		
				AND - FROM				
-		1. 1. 1. 1. 1. M.	н	EIGHT ABO	VE GROU	ND		
				EPTH TIP BE				
	and the second se			YPE OF COV			-	

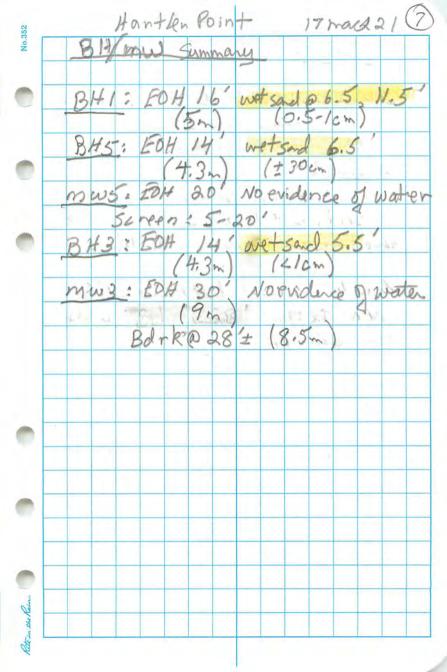

Field B	orehole Log	TEST HO	DLE NO. <u>:551-27134</u>	4-1	ELEV.:		
	antlen Poins	t-	DATE: 15 Man	221	LOGS	BY: <u>SI</u>	/
RILL RIG: 209	90		DIA: Sta Augi	CODEDATO			
MINOR SOIL TYPE e.g. s		DENSITY	MINOR SOIL TYPE e.g. silty, dayey,		PP (Isf)	T	1
WATER CONTENT dry, d	the second se	VERY LOOSE	WATER CONTENT dry, damp, moist,	wet	0-0.25	N <2	CONSISTENCY VERY SOFT
DENSITY GRADATION poorly or we	4-10	LOOSE MED, DENSE	CONSISTENCY		0.25-0.5	2-4	SOFT
SIZE RANGE fine, medium		DENSE	PLASTICITY low, medium, highly COLOUR		0.5-1	4-8 8-15	FIRM
COLOUR INCLUSIONS/ODOUR oxi	>50	VERY DENSE	INCLUSIONS/ODOUR oxides, roots, r	nica, etc.	2.4	15-30	STIFF VERY STIFF
	geneous mixture of gravel, sand,	cilt and clau	00000		>4	>30	HARD
"and" 35-50%. "v" 2	D-35%, "some" 10-20%, "trace" 0	10%		E: 75-200mm		R >200mm	
ZONE USC		CLASSIFICATIO	Occasional, Frequ	SAMPLE		Locari	11-11-11-11-11-11-11-11-11-11-11-11-11-
(ft)				NO.	TYPE	DEPTH	PPM
0-4-	blk rootmat + m	voor time		2/55 1	152	(ft)	0/0/0/45
		and an al		2	221	Urg	0/2/3/47
			The state of the s	3			-
4-9"	onubry Silt,	troom 5	une Republics	4	C22	2-4	36/10/8/8
	00		1 Participation of the second	5	SP Q	1 · · · ·	50/10/10/10/10
=11'	red-brn Sil	+ Sime So	and reakble	6			
	to condellas		1	7	5.53	4-6	1/2/5/1
				8			4.34.340
	C 6.5 1 ± Sam	ly som !	0.5°cm.	9	554	6-8	7/8/11/14
	Gut In	5		10	40000		1 and 1
		vore S/V		11	555	8-10	7/10/11/16
11-12	the MAGE @	1.51	- 1	12			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
1-10	Red-hrn Sill	- Sons Sa	a reppers	13 💥	556	10-12	13/21/21/2
	mang O 11	54		14	1200-		1, 7, 1, 1,
11.5 1	Scma Sandy un	Th Spe		15	557	12-14	8/13/15/
12-11-		the second se	1.5 - more sand	16	1.000		
a la	Redbin silst-sur	the second se	and papales	17	558	14-16	18/29/24/2
	do about, mis			18	1.000		
The second second	EDHP 16' BO	RACH 1	V Sand-Bausto h	19	Cito	honor	
	0 10	PATIN P	N SUNA - CANNA IN	X 20.01	MI	mas-	
	Marilled	heside	hold 18mond	21 22			
		Con Con	The sound	23	-		
N.	10 50	rena n		23	-		
	- 51	Servid		25			
		md-D.	apone schen	26			
	12'	Bligtor		27			
	5	co-d-tos	urface.	28		- C 2	
		¥		29	14.15		
				30	1.		1
loughing second	A THE	- 16 A			1		1.1.1
loughing zones -					INSTALL	ATION DET	AILS
eepage zones -	1 man			LENGTH OF			
epth to bottom of hole epth to water upon co				LENGTH OF	the second se		
EMARKS	impletion -	-		CUTTINGS -	No. of Concession, Name of Street, or other		
		BENTONITE - FROM					
				SAND - FRO	the second s		
				HEIGHT ABO			
		-		DEPTH TIP E		ROUND	
				TYPE OF CC	VER		

ALC: NOT THE


Field	d Bo	orehole Log	TESTHO	DLE NO.: BH4		ELEV.:		
PROJECT N PROJECT:	10. <u>:Ha</u>	rtlen Point		DATE: 17 March	2)	LOGS B	r: <u>51</u>	
DRILL RIG:	bogn			DIA .: Sta HUGE	S OPERATO	DR:	1.1.1.1	
MINOR SOIL T			DENSITY	MINOR SOIL TYPE e.g. silty, clay	vey, etc	PP (tsf)	N	CONSISTENCY
WATER CONT	ENT dry, dan	Contraction of the second se	VERY LOOSE	WATER CONTENT dry, damp, m	oist, wet	0-0.25	<2	VERY SOFT
DENSITY GRADATION p	oorly or well	4-10 10-30	LOOSE MED. DENSE	CONSISTENCY PLASTICITY low, medium, highly		0.25-0.5	2-4	SOFT
SIZE RANGE fi	CHIEF AND NO.		DENSE	COLOUR		0.5-1	4-8 8-15	FIRM
COLOUR		>50	VERY DENSE	INCLUSIONS/ODOUR oxides, ro	ots, mica, etc.	2-4	15-30	VERY STIFF
		es, roots, mica, etc.		supply stored to see or statistic		>4	· >30	HARD
		eneous mixture of gravel, sand			BLE: 75-200mm		>200mm	
		-35%, "some" 10-20%, "trace"			equent, Abundan	t		
ZONE	USC	and the local dial and the second	CLASSIFICATIO	N	SAMPLE	TYPE	DEPTH	PPM
(ft)	A	1117 1.1.1.	4-		NO.	1.5.	(ft)	1.1.1
2-6"		ATK humup & roof			1	5S. 1	0-21	1/2/4/5
× - 7"	1	gren Siltford Sch	d love	histor to publics.	2			1.1.1
		V	1 0	- f - +++-	3	552	2-4'	4/6/6/7
7"-		redbrn Silt Smi	Send, m	out the public) 4	1		111
		Some runty and blu	bon pedens	LIG- O near uct		553	4-61	314/5/7
					6	A second second		
	,	1.100	1 0 1 1	0	7	55.4	6-81	2/4/15/12
75	V	4pt 9" rus.	fursands	mesilt wet	8	1.111		
		Elch wide		-	9	555	8-101	8/12/15/19
		4.5-51 mores	andy tea	same.	10			
		A111 81101		c. Marti	11	556	10-121	6/12/14/21
	-	La Cilla II	ntine	sand silt	12	121.00		
		dry	1.000		13	557	12-14	11/29/23/35
			1 \$1		14	-	treat at the second	1 1 1
	_	EDEPT	b'		15	558	14-16	121/24/50
		0. h	0.0		16		and the second	1.1.
		the second se	pal,	A D & Contine	17			
		Backfill WAT	A John-	sand e cuttin	1			
	_	Dephillor	18 ma	and handle	19		1.000	1.0. A.
		hold.	18ma	re hesido	20			
		the second se	to a at a		21			
	-	FI C	neen		22			22-3-3
		e of	1 glavia	(240014	23			
		- sind B	intonite	screen	24	-		
		Smal FO	Surfac	0	25			
	-	Diver 10	myou	C.e.	26			
		10 C. 1 C. 1 C. 1			27			
	-				28			
	1	and the second sec	-		29			
	1000				30			
oughing zor	nes -							
eepage zone	_	The second se			LENOTUO		ATION DET	AILS
		upon completion -			LENGTH O			
Depth to bottom of hole upon completion - Depth to water upon completion - REMARKS			and the second se	LENGTH OF				
				CUTTINGS - FROM BENTONITE - FROM				
				the second s				
					SAND - FRO			
					HEIGHT AB	the second s		
	11.1				DEPTH TIP		ROUND	
					TYPE OF C	OVER		

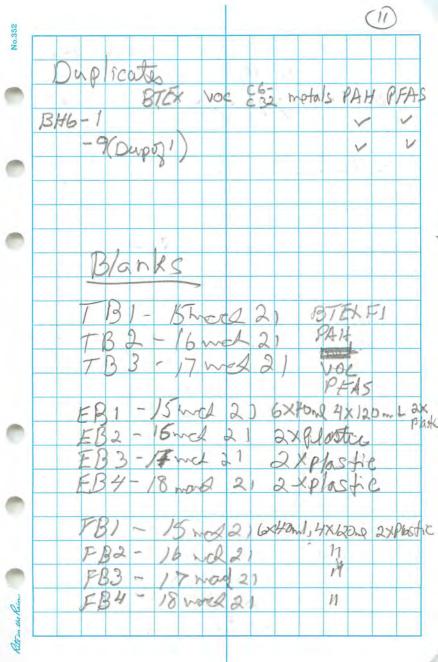
provide a second second			CCI AND	11,000					
Field Bo	orehole Log	TEST HOLE NO	TEST HOLE NO.: 551-217345 ELEV.:						
PROJECT NO.: <u>HØ</u> PROJECT:	rthm Roint	DATE	15 March	2)	LOGS B	ک :۲	r		
DRILL RIG: 7000	n	DIA.:	Std Aven	OPERATO	R:	-			
MINOR SOIL TYPE e.g. silt		DENSITY MINOR	SOIL TYPE e.g. silty, dayey, etc	-	PP (tsf)	N	CONSISTENCY		
WATER CONTENT dry, dar		and the second se	CONTENT dry, damp, moist, we	et	0-0.25	<2	VERY SOFT		
DENSITY	4-10	the second se	STENCY		0.25-0.5	2-4 4-8	SOFT		
GRADATION poorty or well SIZE RANGE fine, medium,	10-30 coarse 30-50	MED. DENSE PLASTI DENSE COLOU	CITY low, medium, highly		0.5-1	4-8 8-15	FIRM		
COLOUR	>50		SIONS/ODOUR oxides, roots, mid	a, etc.	2-4	15-30	VERY STIFF		
INCLUSIONS/ODOUR oxide	is, roots, mica, etc.	22		201	>4	>30	HARD		
	eneous mixture of gravel, sand, s		COBBLE:	75-200mm l	BOULDER	>200mm			
	35%, "some" 10-20%, "trace" 0-		Occasional, Freque	nt, Abundant					
ZONE USC	(CLASSIFICATION	10 million (10 million)	SAMPLE	TYPE	DEPTH	PPM		
(ft)				NO.		(ft)	and and		
74"	black mannic he	imen & roofm	2- 2	155-1	551	0-2'	2/2/3/6		
	Y			2		121027-01			
"-8"	greats shen bra sono	In sitt.		3	SSA	2-4	7/6/7/10		
		1		4	1.00	1000	1 1 /		
2"-111'	He brn Sigt	Smi Sand	dry	5	55.3	4-6	3/4/5/8		
	prly sold. Inw	Olastic, Fr		6		10001200	1.1.1.		
	hik mn pate	Then 62mm	0 5	7	554	6-8	6/7/9/14		
62	pie and pie to	Contra the second		8					
X	moistro 6'+			9	55	2-10'	12/15/18/2		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110 10 100 100		10			1.00,000		
· · · · · · · · · · · · · · · · · · ·	(26.51 met SC	ndh Spon 20	24	11	556	10-12	22/23/29/0		
11-12	orn Lowse sme	1801 sille,		12	- a a	- 103	- in Suspe		
	and the state	and the second of the second of the second s	- syets	13	557	12-14	6/8/11/17		
12 - 141	sill-Sme an	nd as abo	W	14			and the		
	WEA-Sopport.	of the man		15					
	Viere Viere			16	1	11			
	156 A@ 14			17		A			
	Bachfillw	Save-Bart	and Birthin		C	2 - 2	2		
	partany	erren - papert	in out the	19					
	Reduilledie	emarkh	ociola	20		5			
		CTUDIN D	the state	20		1.1.1.1			
	hole	norm		22					
	ET 2	SCOV.		23					
	Ci I In	Tapoup	SADAN	23					
	- ALO	Nombo.		24	1.000				
		Surface.		25					
	sand to	sur back.			-				
				27					
				28					
			3	29	-				
				30	-				
loughing zones -						LATION DET	AILS		
eepage zones -				LENGTH O					
epth to bottom of hole				LENGTH O					
epth to water upon c	ompletion -			CUTTINGS	the second se		-		
EMARKS		1		BENTONITI	the second se				
		. C.		SAND - FRO					
				HEIGHT AB	OVE GPC	VIND			

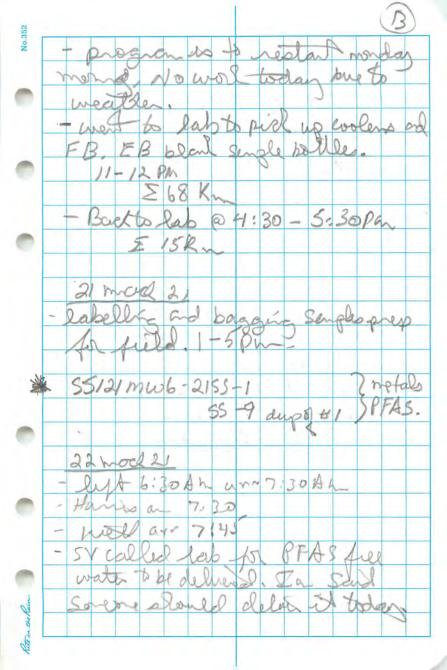
		prehole L						
ROJECT I	NO.:H	ntle Poi	£	DATE: 22 marc	121	LOGS	BY: 51	,
RILL RIG	LOG	ch-		DIA .: Sta Avan	OPERATO	DP:		
NOR SOIL			N DENSITY	MINOR SOIL TYPE e.g. silly clayey		PP (Isf)	1 N	- consistent of
WATER CON	ENT dry, da	mp, moist, wet	0-4 VERY LOOSE	WATER CONTENT dry. damp moist	t wel	0-0.25	<2	CONSISTENCY VERY SOFT
DENSITY GRADATION	poorly or well	1.1	4-10 LOOSE 10-30 MED DENSE	CONSISTENCY		0.25-0.5		SOFT
SIZE RANGE		coarse	30-50 DENSE	PLASTICITY low medium, highly COLOUR		0.5-1	4-8 8-15	FIRM
COLOUR		es, roots, mica, etc.	>50 VERY DENSE	INCLUSIONS/ODOUR oxides, roots.	mica, etc.	2-4	15-30	STIFF VERY STIFF
			vel, sand, silt and clay			>4	>30	HARD
		-35%, "some" 10-20%			E: 75-200mm		R >200mm	
ZONE	USC	T	CLASSIFICATI	Occasional, Freq ON	SAMPLE	1	DEPTH	1
(ft)	1.1.1.1	00		1	NO.	TIPE	(ft)	PPM
5-60	2	All henres, t	pert autor	A	1	551	0-2	111/2/12
- 10	-	aven so	uclusit		2	1220	00	111/2/17
		- al	5		3	552	2-4	3/2/905
0"-0	17	robb	alt Ine he	and as keder	4	1	1	42/10
	1.000	Mate pa	the near in	lit T	5	55.3	4-6	2/4/7/6
0.50	-	24	- ///	4	6			111
27-	-	Bray	sittly nocl C	Kips pase	7	SS 4	6-8	415/12/1
		guile o	D atzile bo	ank)	8		S	1 1
	-	151	THORT		9	555	8-10	9/50-4"
		<u> </u>	TTOAT		10		-	11.
	-	Carrie	\$ 161		11	550	10-12	5/8/12/15
-	17-12-1	Minal	-1027 m	A. +.00	12			1 1 1 1
		- Mar	- to dr' an	e malal MW	13	557	12-14	11/18/14/19
0.000	-	Ange	ne luner Or	D25' alvin	14	20.00	112 11	late in
		aitha		027 dry	15	SSX	11-16	6/9/13/16
100	1	and the second se	Recout lead	aucron wet	16	559		1
	-	botton - 41	Jun Jun	the of the the	18	327	0-2	dip 0) #1
			¥		19	Graht	26-27'	
	2.2011	-2559	dup SI + 1 Y	netals PAIT	20	Orabi	20-27	grabfin
24.3	-2.1		and the second state of th	PEAS	21	-		
		-2556	Loi O Das	10 65	22			
	- 10 16		M		23			NC NOT THE
	14			0	24	(1221	
		10° DENO	20 27-17	0	25			() () () () () () () () () () () () () (
			-16'	0	26			
	-	Sadat	1-16		27			
		The second second	A		28		1.	
		5		and the second s	29	1000		
			3	p — 27	30	(C. 2)		
ghing zon	- 20					10.1	5.1	
page zone					1.5		ATION DET	AILS
		upon completion -			LENGTH OF			
th to water					LENGTH OF			
					CUTTINGS -			
-					BENTONITE			
					SAND - FRO			
					HEIGHT ABO			
14	4				TYPE OF CO		ROUND	
- 12					THEORGO	VER		And the second second


25 Feb. 21 SV 1 at 2-4 isi 403 locked, wa - 60 Tes th ito en l com 1 encio - B as b' where -10111 14 10 44 Weh to to the arts LACE m a la LAN 5 1.0 0 youndates GMA R 15 1. E64Km JL DARLING LLC Riteinthe

March 12 pick up PFAS pre water MiniRae Bloves 5 46K1 551-21MWI-21551 March 15 - lift@ 6:30 arr@ 7130 Am. Compositione an @ 7:304 w Harris: 817-7069 - chalies drillers aver @ 8:00 15 Lole = 7 Sudes puble 12 Jule = 87 Containing BTEXF1-F4 pati - metals Water suple Bottles - Blanks 3day Dama Jamie (DCC) noite La 6 will wood gioppin. De left 9115 and will try to get key for Bldg/SI gate.

No.352 SUCAPOOL 451 th a c blan Q-1:00 fat 11 :00 1:30 45 14 Eaund Need more Se 0. -Conos back@ 2: 30 P1 nlles BHS moded don \$ 30 % 4 Stale @ 6:00 orr Spice The 0 -86 Mm 10 2 K a to 7:00 an Opit Q 8;00 the clarle an 1 @ 8:00 cuttas arro 8:154m etop/100 to lab boxes Home - Pickes 32000 120m mas 500 @ Sets 2: 15Ph led mike to sing his upol ath ercounter F allel adjustit to min


hillers Site @ 4: 20ph charlie played with UXO genup cleaning other soles of pruch eter - arr long 3730 lakel & pkg ton 8400 Ph 88Km 7:00 am @ 8:00 -lit @ Dultas & Charlie an @ S. called mile a Telecon with n Demo@ 11Amt retained drill 900 for GW. nested shallow a also deepen miso. sen and 6 deep-


Hartle fort 17 mark 21 (8) 3 deep mw's : 30 x + (9m) E27m Sneen 20-30 mwi, mwa, mwb 3 Shallow Mai's: 15 ± (5m) BHI, BH4, BH5 acene sundy seens and @ 5m depter. Aheady drilled BH 1 and BH 5 ... nevel to redrill and install beside congleted BH. marspe derper mw3 incase mor duesn't produce water. · Should have writing may the deepen holes to motal the w's No regundo. · Also need plexibility to neplace BH & with mw + if required.

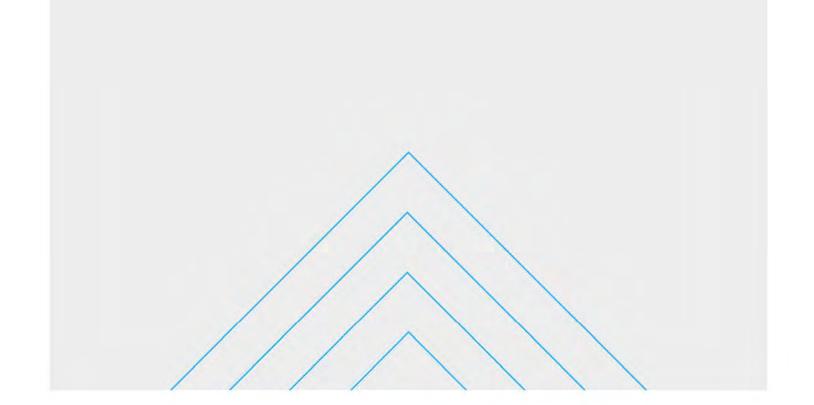
the Ruit 17 macha) Oniginal Propose 6×5m deep mwo: 230n lox 5m deep BH s : 2 30m Present Status 13.3~ mu's:5, 3 -> 16.7~ left 13.6~ BH'o:1, 3, 5-> 16.7~ left : (mu's 16.7 = + 3 mu's 8H° 0 16:4 = = 38H' New proposed progra Deepmws 274 shallow miso (39.4) 12 m

- lift Site @ 5:00 Pm and @ 6:00 Pm. = label = ptg Jung 6:00 - 8:00 Pm 18 mars 21 - lift @ 6:30km on @ 7:30 Am - elevation emut = 21m - Keile & Dulles an @ 8:00pm - molalled 15 mws got BHI 10'Screen BITY 5'Solid BH5 screttos above Scren 2 pentente Sandtosenface CME75-2 - dulles left@ 1:45 pm - Kuth left @ 2: 00 Ph - SV lift @ 2:15 Pm Phonel 3:10 Pm CDN 127 drog april Service monler # + 19511

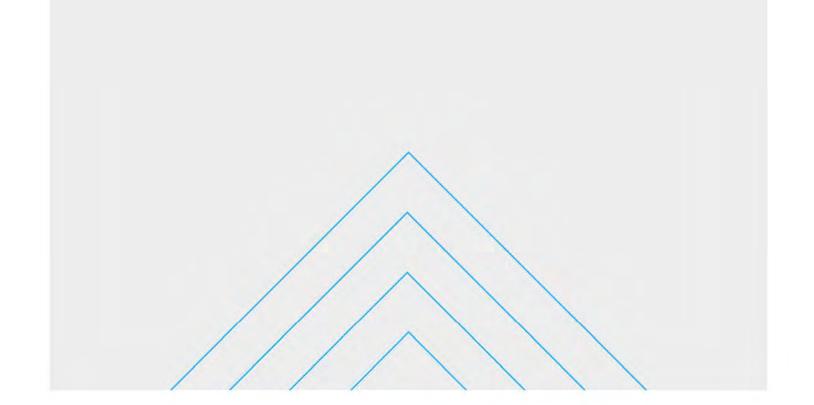
- worked an COC's and delined Simples to the leves End: 630 pm - O. Str. Sland COC appleton and Sud & lep + O.S. - Z TOKM + 16 Km 19 march 20 - lift @ 6:30 an @7:30 An--Snow, high winds - Logan (mathew) called 2 7130 to cleck conditions, he says maybe the afterna would be good to start. SV said septen uncens well SLOW and ite & stall, He mill call mile & discuss - Evan (Logan Duille) called 7:302 Le Dut during Jun Trans the wing reads and too Ead. 5 V said atteron drilling has safety ancene due 6 Sites, ine and cold weather. Mathew will call mile to ducus. -SV waiting for Compisionana. - Spote wild prattley gending Studley. Der the Stanley warranted.

Kill lifter 5: 00 h -SV letto 5:15 pi towards organe anol. piero Res20D1 sils Ph Phouso E61K 23m22 cleel Songles and - Send COC to la vale Ser 22kn 26 march 21 PIDS Gis From 0 stooth espe hangaswell - house. loge . cm a hu 2m

15 13April 21 No.352 tice a lot m. pr parle Parl Lane n Gisla WP WL metter - amostle 11: 30 AM. Ho Rept H Buled Hole MW2 6.414 6.656 0.24 0.751-2004-NR 7.788 - dry mw1 #BH 1 1.002 5.298 4.296 1 SI->dry~11min 1 well wolt 9.L mwb Toc 8.827 8827 1001 96mm I well we= = RL stilled. Artesian 3.188 6.764 3.576 12 still turkid MGUG Imploof= = 72 12 Lbarled duy in brin 15 Sec. * recovery len in 2.1 mins 1344 3.498 5.409 1.911 8.5 I well vol = 42 8.52 Souldeldun in 2mrs 5500 * recovery Icmin 1. 9min


and WW N ELV W 44.59516 063.444160 9-10m mw2 mw1 44.59644° 13m 063.44609° 063.44610° B171 94.59722 15 m 063,44331° 44.59747 0-1 mwb mw5 44.59706 063.44407 4 1 BH4 44.59597 063.44500 12 h allness = 3m -5-2- 2.00 5:30 Pm x 0 6 back@ JA Dire. DARLING F

arther Point Vo.352 Agal 22 Barleal. H20 Dept H dry mwl 7.083 0.8265.315 4.45 1 cuelling= 9L mwB 154 in 5 min (du D. 01m = 0.016m = 4.6 hr for I will vol. 4.869 6.773 1.904 1 well wol = 3.94 mws 74 in 4min (dry) 1cm in 48 sec. rearing 0.01 = 0.0125m = 2.5m for 1 well wol. TOC 8.833 8.833 Iwell vol = 17.92 march Artesian recovery 14m in 5.85ec 304 in 14mins 0-01 = 0.10 3m = 1.4 hr fa 1 we 11 wol 4.418 5.411 0.993 /well wol = 21 mw4 10005 3.0.001 = 16.0 hr for 1000 lol 6.377 6.672 0.295 1600 100 - 66 mw2 in sufficient for senalis @ Sile 7:30 Am


A Sola l DAM P - Pf - d bo. 8 rel mete 11 JL DARLING LLC WA, USA • RiteintheB

19 Por No.352 223 fice 7:00 and @ Sole 8:00 EX FI-F4 2 yturbid. metal VOC PAH PFAS BTEX mw 2 3 3 2 mw3 mw5 water wal ficie Para Ins vtur bida sen le. wa mwb à 2 ×mw7 MW MWB 养 mwy 5 Jule for full sui wato 110 P12 m tà 2694 to in the Rain

